多元正态分布

本篇笔记内容来源
数理统计学导论(原书第7版) 机械工业出版社


定义

如果对于所有 t ∈ R n t\in R^n tRn n n n 维随机 X X X m g f mgf mgf

M X ( t ) = e x p { t ′ μ + 1 2 t ′ Σ t } M_X(t)=exp\{t'\mu+\frac{1}{2}t'\Sigma t\} MX(t)=exp{tμ+21tΣt}

其中协方差矩阵 Σ \Sigma Σ 为对称的半正定矩阵,而且均值 μ ∈ R n \mu\in R^n μRn ,则 X X X 服从多元正态分布.

记为 X ∼ N n ( μ , Σ ) X\sim N_n(\mu,\Sigma) XNn(μ,Σ)

(其实就是每个分量都服从正态分布)


线性运算

假定 X ∼ N n ( μ , Σ ) X\sim N_n(\mu,\Sigma) XNn(μ,Σ) ,设 Y = A X + b Y=AX+b Y=AX+b ,其中 A A A 表示 m × n m\times n m×n 矩阵,而 b ∈ R m b\in R^m bRm .

那么

Y ∼ N m ( A μ + b , A Σ A ′ ) Y\sim N_m(A\mu+b,A\Sigma A') YNm(Aμ+b,AΣA)

Y Y Y 的分量是 X X X 分量的线性组合,算是正态分布的线性可加性在多元情况下的表现吧)


上一条的推论

假定 X ∼ N n ( μ , Σ ) X\sim N_n(\mu,\Sigma) XNn(μ,Σ)

X X X 分割为 m m m n − m n-m nm 两部分

X = [ X 1 X 2 ] X= \left[ \begin{matrix} X_1\\X_2 \end{matrix} \right] X=[X1X2]

以同样方式,对均值和协方差矩阵加以分割

μ = [ μ 1 μ 2 ] , Σ = [ Σ 11 Σ 12 Σ 21 Σ 22 ] \mu= \left[ \begin{matrix} \mu_1\\\mu_2 \end{matrix} \right], \Sigma= \left[ \begin{matrix} \Sigma_{11}&\Sigma_{12}\\ \Sigma_{21}&\Sigma_{22} \end{matrix} \right] μ=[μ1μ2],Σ=[Σ11Σ21Σ12Σ22]

于是

X 1 ∼ N m ( μ 1 , Σ 11 ) X_1\sim N_m(\mu_1,\Sigma_{11}) X1Nm(μ1,Σ11)

所以 X X X 的任意边缘分布也是正态


分量之间的独立性

假定 X ∼ N n ( μ , Σ ) X\sim N_n(\mu,\Sigma) XNn(μ,Σ)

还是像上一条一样分割

X 1 X_1 X1 X 2 X_2 X2 是独立的充要条件是 Σ 12 = O \Sigma_{12}=O Σ12=O

(这里比较特殊,协方差为零与独立等价)

(前面学协方差的时候,协方差为零不能推得独立)

  • 7
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值