数学基础系列:极限与连续

本文整理一些与极限和连续有关的概念和定理。

1 实数线的拓扑

我们先从探讨“距离”的概念出发。我们知道对于 x , y ∈ R x,y\in R x,yR,可以定义一个非负的Euclidean distance ∣ x − y ∣ |x-y| xy。通过这个,我们可以定义某个点 x ∈ R x\in R xR ε \varepsilon ε-邻域 ε \varepsilon ε-neighbourhood)为集合 S ( x , ε ) = { y : ∣ x − y ∣ < ε } S(x,\varepsilon)=\{y:|x-y|\lt \varepsilon\} S(x,ε)={ y:xy<ε},其中 ε > 0 \varepsilon\gt 0 ε>0

如果对于集合 A ⊆ R A\subseteq R AR ∀ x ∈ A \forall x\in A xA,都 ∃ ε > 0 \exists \varepsilon\gt 0 ε>0,使得该点的 ε \varepsilon ε-邻域是 A A A的子集,这样的集合 A A A开集(open set) R R R ∅ \emptyset 也都为开集。

R R R上的所有开集组成的collection,称为topology of R R R(拓扑),或者usual topology on R R R(通常拓扑)。我们还可以在 R R R的子集或子空间(subspace)上讨论topology,对于 A ⊆ S ⊆ R A\subseteq \mathbb{S}\subseteq R ASR,如果 ∀ x ∈ A \forall x\in A xA,都 ∃ S ( x , ε ) \exists S(x,\varepsilon) S(x,ε),使得 S ( x , ε ) ∩ S ⊆ A S(x,\varepsilon)\cap \mathbb{S} \subseteq A S(x,ε)SA,就称 A A A S \mathbb{S} S中是的( A A A is open in S \mathbb{S} S)。比如 [ 0 , 1 ) [0,1) [0,1),在 R R R中不是开的,但在 S = [ 0 , 2 ] \mathbb{S}=[0,2] S=[0,2]中是开的。所有这些集合定义了relative topology on S \mathbb{S} S(相对拓扑),由定义直接可得以下定理。

定理:若 A A A R R R中是开的,则 A ∩ S A\cap \mathbb{S} AS在relative topology on S \mathbb{S} S中是开的。

对于某个点 x ∈ R x\in R xR,若 ∀ ε > 0 \forall \varepsilon \gt 0 ε>0 A ∩ S ( x , ε ) A\cap S(x,\varepsilon) AS(x,ε)均为非空集合,则称 x x x为集合 A A A的一个闭包点(closure point),它不一定是 A A A中的元素。 A A A的所有的闭包点组成了 A A A闭包(closure),记作 A ˉ \bar A Aˉ ( A ) − (A)^- (A)

对于某个点 x ∈ R x\in R xR,若它是 A − { x } A-\{x\} A{ x}的闭包点,则称它是 A A A会聚点(accumulation point)。若 x x x A A A的闭包点且 x ∉ A x\notin A x/A,则 x x x也是 A A A的会聚点。而那些不是会聚点的闭包点,就是 A A A孤点(isolated point)。比如集合 A = { 0 } ∪ [ 1 , 2 ] A=\{0\}\cup[1,2] A={ 0}[1,2],则 x = 0 x=0 x=0 A A A的孤点。

若点 x ∈ A ˉ x\in \bar A xAˉ满足 ∀ ε > 0 \forall \varepsilon\gt 0 ε>0 A c ∩ S ( x , ε ) A^c\cap S(x,\varepsilon) AcS(x,ε)均非空,则 x x x称为集合 A A A边界点boundary point)。可以将 A A A的所有边界点组成的集合记为 ∂ A \partial A A,则 A ˉ = A ∪ ∂ A \bar A = A\cup\partial A Aˉ=AA

A A A内部interior)就是集合 A o = A − ∂ A A^o=A-\partial A Ao=AA

闭集Closed set)就是包含了该集合自己所有的闭包点的集合,对这样的集合来说, A ˉ = A \bar A=A Aˉ=A

定理 R R R上的开集,其补集是闭集。

这是闭集的另一个定义。可以看出, R R R ∅ \emptyset 都既是开集又是闭集。推广至relative topologies,有如下定理。

定理:若 A A A S ⊆ R \mathbb{S}\subseteq R SR中是开的,则 S − A \mathbb{S}-A SA S \mathbb{S} S中是闭的。

定理:(1)开集的collection的并是开的;(2)若 A A A B B B都是开的,那么 A ∩ B A\cap B AB也是开的。

定理:每个开集 A ∈ R A\in R AR都可表达为可数个不交开区间的并。

定理 B \mathscr{B} B包含了 R R R中的开集和闭集。

若一个collection C \mathscr{C} C满足对于一个 A ⊆ R A\subseteq R AR A ⊆ ∪ B ∈ C B A\subseteq \cup_{B\in\mathscr{C}}B ABCB,则称 C \mathscr{C} C A A A的一个覆盖covering)。若这里每个 B B B都是开集,则称该覆盖为开覆盖open covering)。

定理 (Lindelof’s covering theorem):对于由 R R R上的开子集组成的任意的一个collection C \mathscr{C} C,必定存在可数的subcollection { B i ∈ C , i ∈ N } \{B_i\in \mathscr{C}, i\in N\} { BiC,iN},使得
∪ B ∈ C B = ∪ i = 1 ∞ B i \cup_{B \in \mathscr{C}} B = \cup_{i=1}^{\infty} B_i BCB=i=1Bi

这也就是说,若 C \mathscr{C} C R R R中某个集合的覆盖,那么它必定包含了一个可数的子覆盖。这也叫Lindelof property

由覆盖的概念,可以导出一个更重要的概念:紧致性compactness):若对于集合 A A A每个 A A A开覆盖都包含了一个有限的子覆盖,则称 A A A紧的compact)。

理解这个概念的关键在于“每个”和“开覆盖”。举个例子,对于 ( 0 , 1 ] (0,1] (0,1],可数collection { ( 1 / n , 1 ] , n ∈ N } \{(1/n,1],n\in N\} { (1/n,1],nN}是一个开覆盖,但没有有限的子覆盖,因此 ( 0 , 1 ] (0,1] (0,1]不是紧的。

∃ x ∈ A \exists x\in A xA ε > 0 \varepsilon \gt 0 ε>0 A ⊆ S ( x , ε ) A\subseteq S(x,\varepsilon) AS(x,ε),则称 A A A有界的bounded)。换句话说,有界集合必须被一个有限区间所包含。有了有界的概念,我们回到紧致性。

定理:在 R R R中的一个集合是紧的,当且仅当它是闭的、有界的。

对于 A A A的子集 B B B,若 B ⊆ A ⊆ B ˉ B\subseteq A\subseteq \bar B BABˉ,则称 B B B A A A稠密dense)。

定理:若 A A A R R R上的区间, C ⊆ A C\subseteq A CA是一个可数集合,则 A − C A-C AC A A A中稠密。

2 序列和极限

实序列(real sequence)是一个从 N N N R R R的映射,定义域中的元素称为indices,它们的值域称为序列的项/成员/坐标(terms/members/coordinates)。

{ x n } 1 ∞ \{x_n\}_1^{\infty} { xn}1 收敛于converge to)极限 x x x,若 ∀ ε > 0 \forall \varepsilon \gt 0 ε>0 ∃ N ε \exists N_\varepsilon Nε,使得 ∀ n > N ε , ∣ x n − x ∣ < ε \forall n>N_\varepsilon, |x_n-x|\lt \varepsilon n>Nε,xnx<ε。若序列趋于 ± ∞ \pm\infty ±则称发散diverge),有时这也叫在 R ˉ \bar R Rˉ中收敛,这是为了区别它们与那些不收敛到一个固定点的序列。

定理:任意在紧集中的单调序列均收敛。

即使序列不收敛,也可能会无限次地到达某个点。若存在子序列(subsequence) { x n k , k ∈ N } \{x_{n_k},k\in N\} { xn

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值