条件期望误差的有限性

本文探讨了在回归分析中,条件期望函数误差(CEFerror)e的有限性,通过Minkowski不等式和Jensen不等式证明了当|Y|r的期望有限时,|e|r的期望也有限。重点展示了r=2时,残差方差与解释变量的关系,并解释了加入更多变量如何减小残差方差。
摘要由CSDN通过智能技术生成

1 CEF error的有限性问题

在回归中,记条件期望函数conditional expectation functionCEF)为 E [ Y ∣ X = x ] E[Y|X=x] E[YX=x],则可将因变量 Y Y Y分解为
Y = E [ Y ∣ X = x ] + e Y=E[Y|X=x]+e Y=E[YX=x]+e
可记 e = Y − E [ Y ∣ X = x ] e=Y-E[Y|X=x] e=YE[YX=x]为条件期望函数误差(CEF error)。

显然, e e e满足 E [ e ∣ X ] = 0 E[e|X]=0 E[eX]=0 E [ e ] = 0 E[e]=0 E[e]=0,这些都很容易证明。下面来看一个关于 e e e的有限性的问题:

若对于 r > 1 r\gt 1 r>1 E [ ∣ Y ∣ r ] < ∞ E[|Y|^r]\lt \infty E[Yr]<,求证 E [ ∣ e ∣ r ] < ∞ E[|e|^r]\lt \infty E[er]<

从直觉上说, e e e是用条件期望函数对 Y Y Y做了解释后留下的残差,那么 Y Y Y的有限性应该可以保证 e e e的有限性。但要证明它,却比较复杂。

2 证明

首先我们利用Minkowski不等式,有
( E [ ∣ e ∣ r ] ) 1 / r = ( E [ ∣ Y − E [ Y ∣ X = x ] ∣ r ] ) 1 / r ≤ ( E [ ∣ Y ∣ r ] ) 1 / r + ( E [ ∣ E [ Y ∣ X = x ] ∣ r ] ) 1 / r \begin{aligned} &\left(E[|e|^r] \right)^{1/r}\\ =& \left(E\left[|Y-E[Y|X=x]|^r\right]\right)^{1/r}\\ \leq& \left(E\left[|Y|^r\right]\right)^{1/r}+\left(E\left[|E[Y|X=x]|^r\right]\right)^{1/r} \end{aligned} =(E[er])1/r(E[YE[YX=x]r])1/r(E[Yr])1/r+(E[E[YX=x]r])1/r

由已知条件,第一项 ( E [ ∣ Y ∣ r ] ) 1 / r \left(E\left[|Y|^r\right]\right)^{1/r} (E[Yr])1/r是有限的。

对于第二项,由于 g ( ⋅ ) = ∣ ⋅ ∣ r g(\cdot)=|\cdot|^r g()=r r ≥ 1 r\geq 1 r1时为凸函数,由Jensen不等式 g ( E [ Y ∣ X ] ) ≤ E [ g ( Y ) ∣ X ] g(E[Y|X]) \leq E[g(Y)|X] g(E[YX])E[g(Y)X],即有
∣ E [ Y ∣ X ] ∣ r ≤ E [ ∣ Y ∣ r ∣ X ] |E[Y|X]|^r \leq E[|Y|^r|X] E[YX]rE[YrX]
再对两边取期望后取 1 / r 1/r 1/r次幂,可得
( E [ ∣ E [ Y ∣ X ] ∣ r ] ) 1 / r ≤ ( E [ ∣ Y ∣ r ] ) 1 / r \left(E\left[|E[Y|X]|^r \right]\right)^{1/r}\leq \left(E[|Y|^r]\right)^{1/r} (E[E[YX]r])1/r(E[Yr])1/r
由已知条件可知,这一项也是有限的。

3 扩展

若我们关注 r = 2 r=2 r=2,就变成了CEF error的无条件方差 σ 2 = E [ e 2 ] = Var [ e ] \sigma^2=E[e^2]=\text{Var}[e] σ2=E[e2]=Var[e]。结论重新表述如下:

E [ Y 2 ] < ∞ E[Y^2]\lt \infty E[Y2]<,则 σ 2 < ∞ \sigma^2\lt \infty σ2<

事实上,若对于多个解释变量,则不断加入解释变量后,残差的方差必将减小,即若 E [ Y 2 ] < ∞ E[Y^2]\lt \infty E[Y2]<,必有
Var [ Y ] ≥ Var [ Y − E [ Y ∣ X 1 ] ] ≥ Var [ Y − E [ Y ∣ X 1 , X 2 ] ] \text{Var}[Y]\geq \text{Var}[Y-E[Y|X_1]] \geq \text{Var}[Y-E[Y|X_1,X_2]] Var[Y]Var[YE[YX1]]Var[YE[YX1,X2]]

为什么?

证明:先利用 E [ Y ∣ X 1 ] = E [ E [ Y ∣ X 1 , X 2 ] ∣ X 1 ] E[Y|X_1]=E[E[Y|X_1,X_2]|X_1] E[YX1]=E[E[YX1,X2]X1]和Jensen不等式,我们可以得到
( E [ Y ∣ X 1 ] ) 2 = ( E [ E [ Y ∣ X 1 , X 2 ] ∣ X 1 ] ) 2 ≤ E [ ( E [ Y ∣ X 1 , X 2 ] ) 2 ∣ X 1 ] \left(E[Y|X_1]\right)^2=(E[E[Y|X_1,X_2]|X_1])^2\leq E[\left(E[Y|X_1,X_2]\right)^2|X_1] (E[YX1])2=(E[E[YX1,X2]X1])2E[(E[YX1,X2])2X1]

两边取期望后有
E [ ( E [ Y ∣ X 1 ] ) 2 ] ≤ E [ ( E [ Y ∣ X 1 , X 2 ] ) 2 ] E\left[\left(E[Y|X_1]\right)^2\right] \leq E\left[\left(E[Y|X_1,X_2]\right)^2\right] E[(E[YX1])2]E[(E[YX1,X2])2]

同理,利用 E [ Y ] = E [ E [ Y ∣ X 1 ] ] E[Y]=E[E[Y|X_1]] E[Y]=E[E[YX1]]和Jensen不等式,可得到 ( E [ Y ] ) 2 ≤ E [ ( E [ Y ∣ X 1 ] ) 2 ] (E[Y])^2\leq E\left[\left(E[Y|X_1]\right)^2\right] (E[Y])2E[(E[YX1])2],与上面的式子放在一起有
( E [ Y ] ) 2 ≤ E [ ( E [ Y ∣ X 1 ] ) 2 ] ≤ E [ ( E [ Y ∣ X 1 , X 2 ] ) 2 ] (E[Y])^2\leq E\left[\left(E[Y|X_1]\right)^2\right] \leq E\left[\left(E[Y|X_1,X_2]\right)^2\right] (E[Y])2E[(E[YX1])2]E[(E[YX1,X2])2]

三个地方都同时减去 ( E [ Y ] ) 2 (E[Y])^2 (E[Y])2,可得
0 ≤ Var [ E [ Y ∣ X 1 ] ] ≤ Var [ E [ Y ∣ X 1 , X 2 ] ] 0 \leq \text{Var}\left[E[Y|X_1]\right] \leq \text{Var}\left[E[Y|X_1,X_2]\right] 0Var[E[YX1]]Var[E[YX1,X2]]

另一方面,我们已有 e = Y − E [ Y ∣ X ] e=Y-E[Y|X] e=YE[YX],再记 u = E [ Y ∣ X ] − E [ Y ] u=E[Y|X]-E[Y] u=E[YX]E[Y],则 E [ e u ] = 0 E[eu]=0 E[eu]=0,因此
Var [ Y ] = Var [ e + u ] = Var [ e ] + Var [ u ] = Var [ Y − E [ Y ∣ X ] ] + Var [ E [ Y ∣ X ] ] \begin{aligned} &\text{Var}[Y]\\ =& \text{Var}[e+u]\\ =& \text{Var}[e]+\text{Var}[u]\\ =& \text{Var}[Y-E[Y|X]]+\text{Var}[E[Y|X]] \end{aligned} ===Var[Y]Var[e+u]Var[e]+Var[u]Var[YE[YX]]+Var[E[YX]]

Var [ Y ] \text{Var}[Y] Var[Y]为常数,因此, Var [ E [ Y ∣ X ] ] \text{Var}[E[Y|X]] Var[E[YX]]越大, Var [ Y − E [ Y ∣ X ] ] \text{Var}[Y-E[Y|X]] Var[YE[YX]]越小,即
Var [ Y ] ≥ Var [ Y − E [ Y ∣ X 1 ] ] ≥ Var [ Y − E [ Y ∣ X 1 , X 2 ] ] \text{Var}[Y]\geq \text{Var}[Y-E[Y|X_1]] \geq \text{Var}[Y-E[Y|X_1,X_2]] Var[Y]Var[YE[YX1]]Var[YE[YX1,X2]]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值