Curse of Dimensionality

1 Curse of dimensionality

我们知道, k k k-NN算法是一种非常简单又很有效果的算法,它的核心思想就是局部近似。究其原因,就是因为它可以很好地对条件期望进行近似,一方面它用样本均值代替了期望,另一方面它用给定某个点的邻域代替了该点,结合起来,就是用在邻域内的样本均值,取代了在该点处的条件期望。

但是,在高维问题中, k k k-NN会逐渐变得无效。为什么?还要从高维问题的一些特点说起。

首先,高维空中的样本,分布非常稀疏。假设有一个单位体积的超立方体(hypercube),即每个维度的“边长”都为 1 1 1,它的“体积”也为 1 1 1,而样本在里面均匀分布。如果我们想要取到它一定比例 r r r的样本,也即取该超立方体 r r r比例的体积,那么,每条边应该取多少的比例范围?很简单,每个边长应取 e p ( r ) = r 1 / p e_p(r)=r^{1/p} ep(r)=r1/p。如果在 10 10 10维空间中,仅仅想取它 10 % 10\% 10%的体积,就应取每条边的 e 10 ( 0.1 ) = 0.80 e_{10}(0.1)=0.80 e10(0.1)=0.80的长度,也就是对每条边都要取 80 % 80\% 80%的范围。

第二,高维空间中的样本,几乎都分布在“边缘”处。考虑 p p p维空间中的 N N N个样本,假设它们均匀分布在一个单位球中,球心就在原点,那么,距离原点最近的那个样本,它到原点的“距离”的中位数是多少?令 D = min ⁡ i { ∥ x i ∥ } D=\min_i\{\Vert x_i \Vert\} D=mini{xi}为各样本到原点距离的最小值,计算它的累积分布函数
F ( d ) = Pr ⁡ ( D ≤ d ) = 1 − Pr ⁡ ( D > d ) = 1 − ∏ i = 1 N Pr ⁡ ( ∥ x i ∥ > d ) = 1 − ∏ i = 1 N [ 1 − Pr ⁡ ( ∥ x i ∥ ≤ d ) ] = 1 − [ 1 − d p ] N \begin{aligned} &F(d)\\ =& \Pr(D\leq d)\\ =& 1-\Pr(D\gt d)\\ =& 1- \prod_{i=1}^{N} \Pr(\Vert x_i \Vert \gt d)\\ =& 1- \prod_{i=1}^{N} [1-\Pr(\Vert x_i \Vert \leq d)]\\ =& 1- \left[1-d^p\right]^{N} \end{aligned} =====F(d)Pr(Dd)1Pr(D>d)1i=1NPr(xi>d)1i=1N[1Pr(xid)]1[1dp]N

想知道距离的中位数,只需让累积分布函数取值 1 / 2 1/2 1/2即可。可以算出,最近距离的中位数 d ( N , p ) = [ 1 − ( 1 / 2 ) 1 / N ] 1 / p d(N,p)=\left[1-\left(1/2 \right)^{1/N}\right]^{1/p} d(N,p)=[1(1/2)1/N]1/p。比如 p = 10 p=10 p=10 N = 500 N=500 N=500的话, d ( 10 , 500 ) ≈ 0.52 d(10,500)\approx 0.52 d(10,500)0.52,也就是说,离原点最近的那个点,就已经在一半距离以外了。

第三,在高维中,采样密度与 N 1 / p N^{1/p} N1/p成比例。如果在 1 1 1维时我们采样 100 100 100个点,那么在 10 10 10维时我们需要采样 10 0 10 100^{10} 10010个点才能维持一样的采样密度。

2 高维问题举例

2.1 高维中的 1 1 1-NN

设定: N = 1000 N=1000 N=1000 X X X p p p维随机变量,且在 [ − 1 , 1 ] p [-1,1]^p [1,1]p上均匀分布, Y = f ( X ) = exp ⁡ ( − 8 ∥ X ∥ 2 ) Y=f(X)=\exp(-8 \Vert X \Vert^2) Y=f(X)=exp(8X2),记训练集为 T \mathcal{T} T,我们要用 1 1 1-NN去预测 x 0 = 0 x_0=0 x0=0处的 y 0 y_0 y0。当然,我们已经知道了答案 y 0 = f ( x 0 ) = 1 y_0=f(x_0)=1 y0=f(x0)=1

可以对MSE(mean squared error,均方误差)做分解:
MSE ( x 0 ) = E T [ f ( x 0 ) − y ^ 0 ] 2 = [ f ( x 0 ) − E T ( y ^ 0 ) ] 2 + E T [ E T ( y ^ 0 ) − y ^ 0 ] 2 \begin{aligned} &\text{MSE}(x_0)\\ =& E_{\mathcal{T}}[f(x_0)-\hat{y}_0]^2\\ =& [f(x_0)-E_{\mathcal{T}}(\hat{y}_0)]^2 +E_{\mathcal{T}}[E_{\mathcal{T}}(\hat{y}_0)-\hat{y}_0]^2 \end{aligned} ==MSE(x0)ET[f(x0)y^0]2[f(x0)ET(y^0)]2+ET[ET(y^0)y^0]2
最后一个等式是因为 E T { [ f ( x 0 ) − E T ( y ^ 0 ) ] ( E T ( y ^ 0 ) − y ^ 0 ) } = 0 E_{\mathcal{T}}\{[f(x_0)-E_{\mathcal{T}}(\hat{y}_0)](E_{\mathcal{T}}(\hat{y}_0)-\hat{y}_0)\}=0 ET{[f(x0)ET(y^0)](ET(y^0)y^0)}=0。第一部分为bias的平方,第二部分为variance。

p = 1 p=1 p=1时, 1 1 1-NN算法找的最近的点,很可能不会在 0 0 0处,因此必有 E T ( y ^ 0 ) < 0 E_{\mathcal{T}}(\hat{y}_0)\lt 0 ET(y^0)<0,但由于此时 N = 1000 N=1000 N=1000比较大,找的点基本上会离 x 0 x_0 x0比较近,因此bias和variance都不会太大。

但在高维时,问题就开始出现了。比如 p = 10 p=10 p=10,那么如上文所说,到原点的最短距离会大大增加:有 99 % 99\% 99%以上的样本,到 x 0 = 0 x_0=0 x0=0的最近距离会大于 0.5 0.5 0.5。因此预测的 y ^ 0 \hat{y}_0 y^0有很高的概率接近于 0 0 0,bias会非常大,就算variance很小,也会导致MSE接近于 1 1 1了。

有时候不一定是bias过多影响了MSE,比如真正的函数关系只与其中几个维度有关的话,如 f ( X ) = ( X 1 + 1 ) 3 / 2 f(X)=(X_1+1)^3/2 f(X)=(X1+1)3/2,此时,bias不会太大,在MSE中是variance起了决定性作用。

2.2 高维中的LS

设定:真实的变量关系为 y = X β + ϵ y=X\beta+\epsilon y=Xβ+ϵ,其中 ϵ ∼ N ( 0 , σ 2 I N ) \epsilon\sim N(0,\sigma^2 I_N) ϵN(0,σ2IN)且与 X X X无关,我们还是要估计 x 0 x_0 x0处的 y 0 y_0 y0

首先利用最小二乘法,我们有 β ^ = ( X ′ X ) − 1 X ′ y = β + ( X ′ X ) − 1 X ′ ϵ \hat\beta=(X'X)^{-1}X'y=\beta+(X'X)^{-1}X'\epsilon β^=(XX)1Xy=β+(XX)1Xϵ y ^ 0 = x 0 ′ β ^ = x 0 ′ β + x 0 ′ ( X ′ X ) − 1 X ′ ϵ \hat y_0=x_0'\hat\beta=x_0'\beta+x_0'(X'X)^{-1}X'\epsilon y^0=x0β^=x0β+x0(XX)1Xϵ,在这里,我们关注在 x 0 x_0 x0处的expected (squared) prediction error(期望预测误差) EPE ( x 0 ) = E y 0 ∣ x 0 E T ( y 0 − y ^ 0 ) 2 \text{EPE}(x_0)=E_{y_0|x_0}E_{\mathcal{T}} (y_0-\hat{y}_0)^2 EPE(x0)=Ey0x0ET(y0y^0)2

与2.1节中的情况相比,这里多了一个扰动项 ϵ \epsilon ϵ,我们将 y 0 − y ^ 0 y_0-\hat{y}_0 y0y^0拆解为两部分:
y 0 − y ^ 0 = ( y 0 − x 0 ′ β ) + ( x 0 ′ β − y ^ 0 ) y_0-\hat{y}_0=(y_0-x_0'\beta)+(x_0'\beta -\hat{y}_0) y0y^0=(y0x0β)+(x0βy^0)

由简单的计算,可将第一项的平方项化为 E y 0 ∣ x 0 E T ( y 0 − x 0 ′ β ) 2 = σ 2 E_{y_0|x_0}E_{\mathcal{T}} (y_0-x_0'\beta)^2=\sigma^2 Ey0x0ET(y0x0β)2=σ2,将第二项的平方项化为
E y 0 ∣ x 0 E T ( x 0 ′ β − y ^ 0 ) 2 = [ x 0 ′ β − E T ( y ^ 0 ) ] 2 + E T [ E T ( y ^ 0 ) − y ^ 0 ] 2 E_{y_0|x_0}E_{\mathcal{T}}(x_0'\beta -\hat{y}_0) ^2 =[x_0'\beta-E_{\mathcal{T}}(\hat{y}_0)]^2 +E_{\mathcal{T}}[E_{\mathcal{T}}(\hat{y}_0)-\hat{y}_0]^2 Ey0x0ET(x0βy^0)2=[x0βET(y^0)]2+ET[ET(y^0)y^0]2
并且,由于 E T ( y ^ 0 ) = x 0 ′ β + x 0 ′ E T [ ( X ′ X ) − 1 X ′ ϵ ] E_{\mathcal{T}}(\hat{y}_0)=x_0'\beta+x_0'E_{\mathcal{T}} [(X'X)^{-1}X'\epsilon] ET(y^0)=x0β+x0ET[(XX)1Xϵ],再利用 E T [ ( X ′ X ) − 1 X ′ ϵ ] = E X E Y ∣ X [ ( X ′ X ) − 1 X ′ ϵ ] = E X [ ( X ′ X ) − 1 X ′ E Y ∣ X ( ϵ ) ] = 0 E_{\mathcal{T}} [(X'X)^{-1}X'\epsilon]=E_{\mathcal{X}} E_{\mathcal{Y|X}} [(X'X)^{-1}X'\epsilon]=E_{\mathcal{X}} \left[ (X'X)^{-1}X' E_{\mathcal{Y|X}} (\epsilon)\right]=0 ET[(XX)1Xϵ]=EXEYX[(XX)1Xϵ]=EX[(XX)1XEYX(ϵ)]=0,可知 E T ( y ^ 0 ) = x 0 ′ β E_{\mathcal{T}}(\hat{y}_0)=x_0'\beta ET(y^0)=x0β,上式第一项即bias的平方为 0 0 0,最终只剩variance,并可进一步化为
E y 0 ∣ x 0 E T ( x 0 ′ β − y ^ 0 ) 2 = E T [ E T ( y ^ 0 ) − y ^ 0 ] 2 = E T [ x 0 ′ ( X ′ X ) − 1 X ′ ϵ ϵ ′ X ( X ′ X ) − 1 x 0 ] = x 0 ′ E X [ ( X ′ X ) − 1 X ′ [ E Y ∣ X ( ϵ ϵ ′ ) ] X ( X ′ X ) − 1 ] x 0 = x 0 ′ E X [ ( X ′ X ) − 1 ] x 0 σ 2 \begin{aligned} &E_{y_0|x_0}E_{\mathcal{T}}(x_0'\beta -\hat{y}_0) ^2\\ =& E_{\mathcal{T}}[E_{\mathcal{T}}(\hat{y}_0)-\hat{y}_0]^2\\ =& E_{\mathcal{T}}[x_0'(X'X)^{-1}X'\epsilon\epsilon' X (X'X)^{-1}x_0]\\ =& x_0' E_{\mathcal{X}} \left[ (X'X)^{-1}X' [E_{\mathcal{Y|X}}(\epsilon\epsilon')]X (X'X)^{-1} \right] x_0\\ =&x_0' E_{\mathcal{X}} \left[(X'X)^{-1}\right]x_0 \sigma^2 \end{aligned} ====Ey0x0ET(x0βy^0)2ET[ET(y^0)y^0]2ET[x0(XX)1XϵϵX(XX)1x0]x0EX[(XX)1X[EYX(ϵϵ)]X(XX)1]x0x0EX[(XX)1]x0σ2

最后,再次利用 E T ( y ^ 0 ) = x 0 ′ β E_{\mathcal{T}}(\hat{y}_0)=x_0'\beta ET(y^0)=x0β,交叉项为
2 E y 0 ∣ x 0 E T [ ( y 0 − x 0 ′ β ) ( x 0 ′ β − y ^ 0 ) ] = 2 E y 0 ∣ x 0 [ ( y 0 − x 0 ′ β ) E T ( x 0 ′ β − y ^ 0 ) ] = 0 \begin{aligned} &2E_{y_0|x_0}E_{\mathcal{T}}[(y_0-x_0'\beta)(x_0'\beta -\hat{y}_0)]\\ =& 2E_{y_0|x_0}\left[(y_0-x_0'\beta)E_{\mathcal{T}} (x_0'\beta -\hat{y}_0)\right]\\ =& 0 \end{aligned} ==2Ey0x0ET[(y0x0β)(x0βy^0)]2Ey0x0[(y0x0β)ET(x0βy^0)]0

汇总以上3个结果,有:
EPE ( x 0 ) = E y 0 ∣ x 0 E T ( y 0 − y ^ 0 ) 2 = σ 2 + x 0 ′ E X [ ( X ′ X ) − 1 ] x 0 σ 2 \text{EPE}(x_0)=E_{y_0|x_0}E_{\mathcal{T}} (y_0-\hat{y}_0)^2=\sigma^2+x_0' E_{\mathcal{X}} \left[(X'X)^{-1}\right]x_0 \sigma^2 EPE(x0)=Ey0x0ET(y0y^0)2=σ2+x0EX[(XX)1]x0σ2

T \mathcal{T} T为随机抽取的样本,假定 E ( x ) = 0 E(x)=0 E(x)=0,当 N → ∞ N\to\infty N时, X ′ X → N Cov ( x ) X'X\to N \text{Cov}(x) XXNCov(x),再对于所有 x 0 x_0 x0取期望,有
E x 0 EPE ( x 0 ) ∼ σ 2 + σ 2 N E x 0 [ x 0 ′ Cov ( x ) − 1 x 0 ] = σ 2 + σ 2 N tr [ Cov ( x ) − 1 E x 0 ( x 0 x 0 ′ ) ] = σ 2 + σ 2 N tr ( I p ) = σ 2 + p N σ 2 \begin{aligned} &E_{x_0}\text{EPE}(x_0)\\ \sim& \sigma^2+\dfrac{\sigma^2}{N} E_{x_0} [x_0' \text{Cov}(x)^{-1} x_0]\\ =& \sigma^2+\dfrac{\sigma^2}{N} \text{tr} \left[ \text{Cov}(x)^{-1} E_{x_0} (x_0x_0' )\right]\\ =& \sigma^2+\dfrac{\sigma^2}{N} \text{tr} (I_p)\\ =& \sigma^2+\dfrac{p}{N}\sigma^2 \end{aligned} ===Ex0EPE(x0)σ2+Nσ2Ex0[x0Cov(x)1x0]σ2+Nσ2tr[Cov(x)1Ex0(x0x0)]σ2+Nσ2tr(Ip)σ2+Npσ2

可以看出,EPE会随着 p p p的增加而增加。

参考文献

  • Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. Vol. 1. No. 10. New York: Springer series in statistics, 2001.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值