文章目录
本文旨在对计算机视觉中常用的运动类型进行总结——包括2D平面的运动和3D空间的运动。
参考资料:
一、2D平面的运动模型
2D平面的运动一般指对图像的变换,主要包括Translation(平移)、Rotation(旋转)、Euclidean(刚体运动)、Similarity(相似)、Affine(仿射)以及Projective(射影) 。
上图为2D平面的基本运动模型示意图。
Translation
-
表达式 非齐次形式:
(1) x ′ = x + t \bold{x^{'}} = \bold{x }+ \bold{t} \tag{1} x′=x+t(1) -
自由度 Translation 具有2个DOF(Degree of Free,自由度): t x , t y t_x, t_y tx,ty 。因此一个平移变换只需要一对对应点(Correspondence)就能唯一确定。Translation 具有2个DOF(Degree of Free,自由度): t x , t y t_x, t_y tx,ty 。因此一个平移变换只需要一对对应点(Correspondence)就能唯一确定。
-
不变量 平移变换不会改变物体的任何性质,因此平行、长度、面积、夹角等性质都不会改变。
Rotation
-
表达式
关于旋转矩阵的推导请自行百度…
(2) R ( θ ) = [ cos ( θ ) − sin ( θ ) sin ( θ ) cos ( θ ) ] R(\theta) = \left[ \begin{matrix} &\cos(\theta) \ &-\sin(\theta) \\ &\sin(\theta) \ &\cos(\theta) \end{matrix} \right] \tag{2} R(θ)=[