文章目录
本文旨在对计算机视觉中常用的运动类型进行总结——包括2D平面的运动和3D空间的运动。
参考资料:
一、2D平面的运动模型
2D平面的运动一般指对图像的变换,主要包括Translation(平移)、Rotation(旋转)、Euclidean(刚体运动)、Similarity(相似)、Affine(仿射)以及Projective(射影) 。
上图为2D平面的基本运动模型示意图。
Translation
-
表达式 非齐次形式:
(1) x ′ = x + t \bold{x^{'}} = \bold{x }+ \bold{t} \tag{1} x′=x+t(1) -
自由度 Translation 具有2个DOF(Degree of Free,自由度): t x , t y t_x, t_y tx,ty 。因此一个平移变换只需要一对对应点(Correspondence)就能唯一确定。Translation 具有2个DOF(Degree of Free,自由度): t x , t y t_x, t_y tx,ty 。因此一个平移变换只需要一对对应点(Correspondence)就能唯一确定。
-
不变量 平移变换不会改变物体的任何性质,因此平行、长度、面积、夹角等性质都不会改变。
Rotation
-
表达式
关于旋转矩阵的推导请自行百度…
(2) R ( θ ) = [ cos ( θ ) − sin ( θ ) sin ( θ ) cos ( θ ) ] R(\theta) = \left[ \begin{matrix} &\cos(\theta) \ &-\sin(\theta) \\ &\sin(\theta) \ &\cos(\theta) \end{matrix} \right] \tag{2} R(θ)=[cos(θ) sin(θ) −sin(θ)cos(θ)](2)
旋转矩阵 R ( θ ) R(\theta) R(θ) 表示在二维平面逆时针旋转 θ \theta θ 角度。旋转矩阵是一种正交归一化矩阵,具有很好的性质。
非齐次形式:
(3) x ′ = R ( θ ) ⋅ x \bold{x^{'}} = R(\theta) \cdot \bold{x} \tag{3} x′=R(θ)⋅x(3) -
自由度 Rotation 只有1个DOF: θ \theta θ ,因此理论上来说也只需要一对点对即可求解,但是实际中一般很少出现纯旋转,而且点对之间总是存在噪声,因此很少有只使用一个点对求解旋转的。
-
不变量 旋转和平移类似,也不会改变物体的任何性质,因此平行、长度、面积、夹角等性质都不会改变。
Euclidean(Rotation + Translation)
这是一种刚体运动 ,是平移和旋转的复合。
-
表达式 非齐次形式:
(4) x ′ = R ( θ ) ⋅ x + t \bold{x^{'}} = R(\theta) \cdot \bold{x} + \bold{t} \tag{4} x′=R(θ)⋅x+t(4)
即先对点做旋转,再将其平移 。 -
自由度 3个DOF: θ , t x , y y \theta, t_x, y_y θ,tx,yy 。需要2对点对进行求解。
-
不变量 因为旋转和平移都不会改变物体的性质,因此平行、角度、面积等性质都不会发生改变。
Similarity
是对刚体运动的一个扩展,在旋转矩阵上增加了一个全局 scale 系数
-
表达式 非齐次形式:
(5) x ′ = s R ( θ ) ⋅ x + t \bold{x^{'}} = sR(\theta) \cdot \bold{x} + \bold{t} \tag{5} x′=sR(θ)⋅x+t(5)
其中 s ∈ R + s \in R^{+} s∈R+ 为一个标量。 -
自由度 4个DOF: s , θ , t x , y y s, \theta, t_x, y_y s,θ,tx,yy 。需要2对点对进行求解。
-
不变量 因为 s s s 会对图像各个发现进行均匀缩放,所以面积会发生改变,但是面积比、平行、夹角等性质依然不变。
Affine
-
表达式 非齐次形式:
(6) x ′ = A 2 × 2 ⋅ x + t \bold{x^{'}} = A_{2\times 2} \cdot \bold{x} + \bold{t} \tag{6} x′=A2×2⋅x+t(6)
A 2 × 2 A_{2 \times 2} A2×2 中的元素为任意标量,它是一个非奇异矩阵。 -
自由度 6个DOF: A , t x , t y A, t_x, t_y A,tx,ty 。需要3对点对进行求解。
-
不变量 因为仿射变换包含非均匀缩放,所以长度比和夹角以及面积等都会发生改变,但是 平行线、平行线段的长度比、面积比保持不变。
Projective
2D运动中最常见的运动形式。是齐次坐标的一般非线性变换 。
-
表达式
(7) x ˉ ′ = [ A 2 × 2 t 2 × 1 v 1 × 3 1 ] x ˉ \bold{\bar{x}}^{'} = \left[\begin{matrix} &\bold{A}_{2 \times 2} \ & \bold{t}_{2 \times 1} \\ & \bold{v}_{1 \times 3} \ & 1 \end{matrix}\right] \bold{\bar{x}} \tag{7} xˉ′=[A2×2 v1×3 t2×11]xˉ(7)
其中 x ˉ \bold{\bar{x}} xˉ 表示 x \bold{x} x 的齐次形式。和齐次形式的仿射变换相比,射影变换的本质区别在于 v 1 × 3 \bold{v}_{1\times 3} v1×3 不再是零向量。 -
自由度 8个DOF: A , v 1 × 3 , t x , t y A, v_{1\times 3}, t_x, t_y A,v1×3,tx,ty 。需要4对点对进行求解。
-
不变量 物体的所有性质都会发生改变。