本专栏专注分享大型Bat面试知识,后续会持续更新,喜欢的话麻烦点击一个关注
面试官: 对于Tersorflow你怎么理解的,有做过人工智能的应用吗
心理分析:了解tersorflow并且应用到项目中的,可谓少之又少。国内几乎没有多少Android开发者对人工智能有过认识。也不明白人工智能对Android带来的风险与机会。如果面试官问到了tersorflow 一定是想深挖你。在问这个问题就已经决定要你了。人工智能可以说相当重要,
往往会忽略调并发处理 ,这道题会难住绝大多数人
求职者:对人工智能的理解入手。告诉面试官 我以前做过一个电视机识别 手势的功能
接下来我们来分享什么是人工智能,对Android来说能做什么。如何训练模型 设定神经网络,集成AndroidStudio出发。全方位的带你理解tersorflow人工智能
我以前做过 电视机识别手势。数字手势识别APP,具体分享下如何一步步训练一个卷积神经网络模型(CNN)模型,然后把模型集成到Android Studio中,开发一个数字手势识别APP。整个project的源码已经开源在github上。先说下这个数字手势识别APP的功能:能够识别做出的 0,1,2,3,4,5,6,7,8,9,10这11个手势。
一、数据集的收集
这么点照片想训练模型简直天方夜谭,只能祭出 data augmentation(数据增强)神器了,通过旋转,平移,拉伸 等操作每张图片生成100张,这样图片就变成了21500张。下面是 data augmentation 的代码:
from keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
import os
datagen = ImageDataGenerator(
rotation_range=20,
width_shift_range=0.15,
height_shift_range=0.15,
zoom_range=0.15,
shear_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
dirs = os.listdir("picture")
print(len(dirs))
for filename in dirs:
img = load_img("picture//{}".format(filename))
x = img_to_array(img)
# print(x.shape)
x = x.reshape((1,) + x.shape) #datagen.flow要求rank为4
# print(x.shape)
datagen.fit(x)
prefix = filename.split('.')[0]
print(prefix)
counter = 0
for batch in datagen.flow(x, batch_size=4 , save_to_dir='generater_pic', save_prefix=prefix, save_format='jpg'):
counter += 1
if counter > 100:
break # 否则生成器会退出循环
二、数据集的处理
1.缩放图片
接下来对这21500张照片进行处理,首先要把每张照片缩放到64*64的尺寸,这么做的原因如下:
- 不同手机拍出的照片的size各不相同,要统一
- 如果手机拍出来的高分辨率图片,太大,GPU显存有限,要压缩下,减少体积。
- APP通过手机摄像头拍摄出来的照片,不同机型有差异,要统一。
对图片的缩放不能简单的直接缩小尺寸,那样的话会失真严重。所以要用到一些缩放算法,TensorFlow中已经提供了四种缩放算法,分别为: 双线性插值法(Bilinear interpolation)、最近邻居法(Nearest neighbor interpolation)、双三次插值法(Bicubic interpolation)和面积插值法(area interpolation)。 我这里使用了面积插值法(area interpolation)。代码为:
#压缩图片,把图片压缩成64*64的
def resize_img():
dirs = os.listdir("split_pic//6")
for filename in dirs:
im = tf.gfile.FastGFile("split_pic//6//{}".format(filename), 'rb').read()
# print("正在处理第%d张照片