多模态AGI:下一Token预测技术架构最新综述

在NLP中语言建模的基础上,下一个token预测(Next Token Prediction, NTP)已取得了相当的成功。同样,不同模态的任务也可以有效地包含在NTP框架内,将多模态信息转换为tokens并根据上下文预测下一个token。

**利用下一个token预测的历史发展。**具有视觉和更多模态的模型以蓝色背景设置,而支持音频模态的模型以绿色背景设置。

在这里插入图片描述

多模态学习与下一个token预测(MMNTP)的通用流程图

提出了一个全面的分类体系,通过NTP的视角统一多模态学习中的理解与生成,涵盖了五个关键方面:多模态标记化、多模态NTP模型架构、统一的任务表示、数据集与评估以及开放性挑战

用于下一个词预测的多模态学习综述的结构(MMNTP)

一、多模态标记化

多模态令牌化是将来自不同源(如图像、视频、音频剪辑)的信息分解成最小、可管理的单元(令牌),以便NTP模型学习。

类型:多模态令牌化器分为离散型和连续型,基于它们如何从原始数据中派生令牌。

在这里插入图片描述

Discrete Tokenization Basics

  • 离散令牌:意味着表示空间由有限数量的离散符号组成,类似于语言模型的词汇表。

  • 应用:通过量化过程将连续空间的值映射到离散空间,通常结果是一个更小的表示空间。

Continuous Tokenization Basics

  • 连续令牌:与离散令牌不同,连续令牌直接从数据的内在属性派生,不强制量化到预定义的码本中。

  • 优势:连续令牌化特别适合于自然存在于连续形式中且需要丰富表示能力的模态,如音频和视觉数据。

Training Methods for Tokenizers

训练方法:基于它们的训练目标,令牌化器的训练方法可以分为四组:自编码(Auto-Encoding)、去噪自编码(Denoising Auto-Encoding)、监督预训练(Supervised Pretraining)和对比学习(Contrastive Learning)。

二、多模态NTP模型架构

多模态NTP基本结构:多模态信息被令牌化后,需要一个能够处理多模态信息的模型。这个模型通常包括三个步骤:

  • 编码各种输入(如图像、文本、音频等)成令牌序列;

  • 使用多模态Transformer预测下一个令牌;

  • 将预测的令牌解码回各自模态的空间。

有两种类型的多模态下一个token预测模型,组合模型利用预训练的外部编码器和解码器,而统一模型则在一个单一的主干模型中处理所有任务。

组合模型:这种模型使用强大的外部编码器和解码器(例如CLIP)来处理多模态信息。它们通过添加额外的对齐层来连接外部编码器和解码器,以实现多模态理解和生成任务。

统一模型:与组合模型不同,统一模型使用轻量级的编码器和解码器,将多模态理解和生成任务主要在主干模型(通常是大型Transformer解码器)中完成。

三、统一的任务表示

训练目标:在多模态令牌化后,可以使用统一的主干模型进行训练,以处理各种下游理解和生成任务。训练任务分为预训练和微调,类似于大型语言模型的训练。

  • 离散令牌预测(DTP):学习预测给定上下文的下一个离散令牌,可以是文本或其他模态。

  • 连续令牌预测(CTP):除了离散多模态令牌外,多模态信息也可以表示为连续向量,称为连续令牌。

  • 预训练:预训练的重点是将不同模态的表示空间与语言空间对齐,可以分为理解和生成任务的对齐。

  • 微调:在模态对齐训练后,通过指令调整来提高模型理解和执行复杂用户查询的能力,并通过偏好对齐训练来细化模型行为,以符合人类的隐性偏好。

  • 推理:在预训练和微调阶段之后,MMNTP模型也可以通过提示工程技术来增强多模态任务的性能,类似于大型语言模型。

Next Token Prediction Towards Multimodal Intelligence: A Comprehensive Survey
https://arxiv.org/abs/2412.18619
https://github.com/LMM101/Awesome-Multimodal-Next-Token-Prediction

四、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值