怎么知道你训练的靠不靠谱?yolov3的mAP计算教程来了

本文提供了一个详细的yolov3模型mAP计算教程,包括使用darknet valid命令进行推断结果计算,编写计算文件,以及配置参数获取最终结果。教程强调了正确配置数据和理解结果对提升模型性能的重要性。
摘要由CSDN通过智能技术生成

都2020年了还有人写python2的求解教程,python2都快停止维护了好嘛?

本教程针对darknet版本的yolov3进行计算mAP

第一步:通过darknet valid命令计算yolo3推断结果

在这之前你要在xxx.data里面配置vaild那一条的路径,是一个全是文件名不包含后缀和路径的txt文档,如果你按照标准流程训练的yolo3一定会有这个东西

./darknet detector valid cfg/voc.data cfg/yolo3-spp.cfg backup/yolov3.backup -out "" -thresh .5

关于这个.5 改了好像不生效,貌似是写死在detector.c里面的,好几处,我不知道怎么改。

运行结束后再你的yolov3根目录下面的results里面会有几个txt

第二步:编写计算文件

文件名:voc_eval_py3.py

# --------------------------------------------------------
# Fast/er R-CNN
# Licensed under The MIT License [see LICENSE for details]
# Written by Bharath Hariharan
# --------------------------------------------------------

import xml.etree.ElementTree as ET
import os
#import cPickle
import _pickle as cPickle
import numpy as np

def parse_rec(filename):
    """ Parse a PASCAL VOC xml file """
    tree = ET.parse(filename)
    objects = []
    for obj in tree.findall('object'):
        obj_struct = {}
        obj_struct['name'] = obj.find('name').text
        #obj_struct['pose'] = obj.find('pose').text
        #obj_struct['truncated'] = int(obj.find('truncated').text)
        obj_struct['difficult'] = int(obj.find('difficult').text)
        bbox = obj.find('bndbox')
        obj_struct['bbox'] = [int(bbox.find('xmin').text),
                              int(bbox.find('ymin').text),
                              int(bbox.find('xmax').text),
                              int(bbox.find('ymax').text)]
        objects.append(obj_struct)

    return objects

def voc_ap(rec, prec, use_07_metric=False):
    """ ap = voc_ap(rec, prec, [use_07_metric])
    Compute VOC AP given precision and recall.
    If use_07_metric is true, uses the
    VOC 07 11 point method (default:False).
    """
    if use_07_metric:
        # 11 point metric
        ap = 0.
        for t in np.arange(0., 1.1, 0.1):
            if np.sum(rec >= t) == 0:
                p = 0
            else:
                p = np.max(prec[rec >= t])
            ap = ap + p / 11.
    else:
        # correct AP calculation
        # first append sentinel values at the end
        mrec = np.concatenate(([0.], rec, [1.]))
        mpre = np.concatenate(([0.], prec, [0.]))

        # compute the precision envelope
        for i in range(mpre.size - 1, 0, -
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值