目录
工具
1.git:去git官网下载:https://git-scm.com/downloads/,下载自己需要的版本,下载完成后按照默认步骤安装即可
2.pycocotools:测试mAP时需要用到,参照https://blog.csdn.net/SyliaJason/article/details/103066638 进行安装(Win10系统)
3.Advanced Renamer:批量重命名工具——https://www.advancedrenamer.com/ ,批量更改数据集名称时可能会用到。
前言
对于不同数据集mAP值的计算方法不同,VOC2007提出了利用11个recall值来计算AP,而在2010之后使用了所有数据点来计算AP。COCO数据集采用的计算方式更加严格,它计算了不同IOU阈值和物体大小下的AP值,再取平均值。
本文参考了利用COCO API评估YOLOv3模型mAP的相关文章,这里总结了如何评估自己训练出的yolov3模型的mAP,其中自制数据集参考了VOC数据集的格式存放。
测试mAP需要两个json文件:cocoGt_file 和 cocoDt_file,一个是经过正确标注的标注集的json文件,一个是通过自己训练的YOLOv3模型进行检测而生成的结果集的json文件,这可以通过mAP的定义来理解。
下面我将分别介绍如何生成所需要的这两个json文件,进行mAP测试。
【文章默认已经准备好了带有xml标注的数据集,并且训练好了自己的yolo.h5模型】
生成标注集的json文件
数据集准备
我使用的是VOC格式的自制数据集,要生成COCO数据集需要的json文件,需要对数据集进行处理。
我这里需要使用的仅仅是测试集,所以只需要用到test.txt,该文件保存的是
测试集的图像名称。
将voc注解格式数据集的注解转换成txt注解格式
在自己的项目文件夹下新建1_voc2txt.py文件,输入如下代码。注意根据自己的实际情况更改数据集的路径,并且在VOCdevkit/VOC2007/Annotations文件夹下需要存放标注的.xml文件。
import os
import shutil
'''
将 dataset_dir 改为你的数据集的路径。
生成的txt注解文件格式为:
图片名 物体1左上角x坐标,物体1左上角y坐标,物体1右下角x坐标,物体1右下角y坐标,物体1类别id 物体2左上角x坐标,物体2左上角y坐标,物体2右下角x坐标,物体2右下角y坐标,物体2类别id ...
train_difficult控制是否训练难例。use_default_label控制是否使用默认的类别文件。
'''
# 是否训练难例。
train_difficult = True
# train_difficult = False
# 是否使用默认的类别文件。
use_default_label = True
# use_default_label = False
dataset_dir = 'VOCdevkit/VOC2007/'
train_path = dataset_dir + 'ImageSets/Main/train.txt'
val_path = dataset_dir + 'ImageSets/Main/val.txt'
test_path = dataset_dir + 'ImageSets/Main/test.txt'
#test_path = None
annos_dir = dataset_dir + 'Annotations/'
# 保存的txt注解文件的文件名
train_txt_name = 'voc2007_train.txt'
val_txt_name = 'voc2007_val.txt'
test_txt_name = 'voc2007_test.txt'
class_names = []
class_names_ids = {
}
cid_index = 0
if use_default_label:
# class_txt_name指向已有的类别文件,一行一个类别名。类别id根据这个类别文件中类别名在第几行确定。
# 如果只训练该数据集的部分类别,那么编辑该类别文件,只留下所需类别的类别名即可。
class_txt_name = 'model_data/voc_classes.txt'
if not os.path.exists(class_txt_name):
raise FileNotFoundError("%s does not exist!" % class_txt_name)
with open(class_txt_name, 'r', encoding='utf-8') as f:
for line in f:
cname = line.strip()
class_names.append(cname)
class_names_ids[cname] = cid_index
cid_index += 1
else: # 如果不使用默认的类别文件。则会分析出有几个类别,生成一个类别文件。
# 保存的类别文件名
class_txt_name = 'data/class_names.txt'
train_names = []
val_names = []
test_names = []
with open(train_path, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
train_names.append(line)
with open(val_path, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
val_names.append(line)
if test_path is not None:
with open(test_path, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
test_names.append(line)
# 创建txt注解目录
if os.path.exists('annotation/'): shutil.rmtree('annotation/')
os.mkdir('annotation/')
def write_txt(xml_names, annos_dir, txt_name, use_default_label, train_difficult, class_names, class_names_ids, cid_index):
content = ''
for xml_name in xml_names:
xml_file = '%s%s.xml'%(annos_dir, xml_name)
enter_gt = False
enter_part = False
x0, y0, x1, y1, cid = '', '', '', '', -10
difficult = 0
img_name = ''
bboxes = ''
with open(xml_file, 'r', encoding='utf-8') as f:
for line in f:
line = line.strip()
if '<filename>' in line:
if '</filename>' in line:
ss = line.split('name>')
sss = ss[1].split('</file')
img_name = sss[0]
else:
print('Error 1.')
if '<object>' in line:
if '</object>' in line: