开源免费大语言模型(LLMs)排行榜

目录

一、模型介绍

1.1  LLaMA (Large Language Model Meta AI)

1.2 Falcon

1.3 Mistral

1.4 GPT-NeoX

1.5 Bloom

1.6 OPT (Open Pre-trained Transformer)

1.7 GPT-J

1.8 RedPajama

1.9 Cerebras-GPT

1.10 WizardLM

二、其他问题

2.1 大模型中的6B、7B是什么含义,是如何计算的?

2.2 什么是参数(Parameters)?

2.3 如何计算参数?

对比分析

总结


下面是一些热门的开源免费大语言模型(LLMs)的排行榜,并对它们的特点、优劣对比,以及搭建运行的最低配置要求进行了详细分析。

一、模型介绍

1.1  LLaMA (Large Language Model Meta AI)

  • 发布方: Meta (Facebook)
  • 模型大小: 7B, 13B, 30B, 65B 参数
  • 特点: 高效、轻量级模型,具有良好的推理性能,能在较小的显存上运行较大的模型。
  • 优点:
    • 训练高效,精度优秀
    • 在推理时速度快
    • 7B 模型对硬件要求较低
  • 缺点: 65B 参数模型需要极高的计算资源。
  • 最低配置要求:
    • 7B 参数: 24 GB 显存 GPU(如 A100 40GB 或 RTX 3090)
    • 65B 参数: 256 GB 显存的多张 GPU

1.2 Falcon

  • 发布方: Technology Innovation Institute (TII)
  • 模型大小: 7B, 40B 参数
  • 特点: Falcon 具有极高的生成质量,被认为是目前开源模型中性能最好的之一,特别是在较大参数设置下。
  • 优点:
    • 出色的文本生成能力
    • 对齐和推理结果自然
  • 缺点: 40B 参数模型对硬件要求较高。
  • 最低配置要求:
    • 7B 参数: 16-24 GB 显存的单张 GPU
    • 40B 参数: 4 张 80GB A100 GPU 或相当的多张 GPU

1.3 Mistral

  • 发布方: Mistral AI
  • 模型大小: 7B 参数
  • 特点: Mistral 7B 模型在规模较小的情况下仍表现出色,特别是在多任务学习和推理任务中。
  • 优点:
    • 高效性,适用于中小型部署
    • 精确的对齐和文本生成能力
  • 缺点: 功能较大模型有限,适合轻量级应用。
  • 最低配置要求:
    • 7B 参数: 24 GB 显存的 GPU(如 A100 或 RTX 3090)

1.4 GPT-NeoX

  • 发布方: EleutherAI
  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张3蜂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值