目录
1.1 LLaMA (Large Language Model Meta AI)
1.6 OPT (Open Pre-trained Transformer)
下面是一些热门的开源免费大语言模型(LLMs)的排行榜,并对它们的特点、优劣对比,以及搭建运行的最低配置要求进行了详细分析。
一、模型介绍
1.1 LLaMA (Large Language Model Meta AI)
- 发布方: Meta (Facebook)
- 模型大小: 7B, 13B, 30B, 65B 参数
- 特点: 高效、轻量级模型,具有良好的推理性能,能在较小的显存上运行较大的模型。
- 优点:
-
- 训练高效,精度优秀
- 在推理时速度快
- 7B 模型对硬件要求较低
- 缺点: 65B 参数模型需要极高的计算资源。
- 最低配置要求:
-
- 7B 参数: 24 GB 显存 GPU(如 A100 40GB 或 RTX 3090)
- 65B 参数: 256 GB 显存的多张 GPU
1.2 Falcon
- 发布方: Technology Innovation Institute (TII)
- 模型大小: 7B, 40B 参数
- 特点: Falcon 具有极高的生成质量,被认为是目前开源模型中性能最好的之一,特别是在较大参数设置下。
- 优点:
-
- 出色的文本生成能力
- 对齐和推理结果自然
- 缺点: 40B 参数模型对硬件要求较高。
- 最低配置要求:
-
- 7B 参数: 16-24 GB 显存的单张 GPU
- 40B 参数: 4 张 80GB A100 GPU 或相当的多张 GPU
1.3 Mistral
- 发布方: Mistral AI
- 模型大小: 7B 参数
- 特点: Mistral 7B 模型在规模较小的情况下仍表现出色,特别是在多任务学习和推理任务中。
- 优点:
-
- 高效性,适用于中小型部署
- 精确的对齐和文本生成能力
- 缺点: 功能较大模型有限,适合轻量级应用。
- 最低配置要求:
-
- 7B 参数: 24 GB 显存的 GPU(如 A100 或 RTX 3090)
1.4 GPT-NeoX
- 发布方: EleutherAI
- <