LLM简介
大规模语言模型(Large Language Model,LLM)是一种基于深度学习的自然语言处理模型,它能够理解和生成符合人类语法与语义的文本。所谓“语言模型”,是指专门用于分析和处理文字或符号系统的人工智能模型,它可以识别其中的规律,并根据输入提示(prompt)自动创作相关内容。
LLM 通常基于神经网络模型,使用大规模的语料库进行训练,比如使用互联网上的海量文本数据。这些模型通常拥有数十亿到数万亿个参数,能够处理各种自然语言处理任务,如自然语言生成、文本分类、文本摘要、机器翻译、语音识别等。
2024年,开源 LLM 的领域有了显著发展,为研究人员、开发人员和企业提供了先进的模型,无需专有许可证。本文探讨了10个顶级开源 LLM 的关键特性、最佳用例、参数数量和上下文长度等。
1. GPT-4 (ChatGPT)
GPT-4 是由 OpenAI 开发的一款先进的LLM。它基于 Transformer 架构,具备强大的自然语言处理能力,能够理解和生成多种语言文本。
GPT-4 的关键特性包括:
- 能够更好地理解复杂语境,适用于对话、内容生成、文本总结等任务。
- 支持文本,图像和其他数据类型的输入。
- 对全球范围内的知识有更广泛的覆盖,适合教育、研究和商业等多种应用场景。
- 增加了对有害内容的防护,生成的内容更加安全和负责任。
GPT-4 凭借其超大规模的参数和改进的特性,适用于多种复杂任务,尤其是在需要语言理解、生成和推理的领域。其扩展的上下文长度使其能够处理长文档,同时多模态支持进一步扩大了它的应用场景。
2. Claude 3
Claude 3 是由 Anthropic 开发的第三代 LLM