牛!通过把小波变换和注意力机制结合,模型Wtfp登上Nature子刊,在飞行轨迹预测任务中,误差降低36%!
不仅如此,在CVPR、ICCV等顶会上,其也是独领风骚,出了GestFormer、BWG、WaveIPT等一系列成果,热门程度可见一斑!
主要在于,小波变换具备多分辨率分析能力,能有效捕捉非平稳信号的局部特征和突变信息;注意力机制可让模型聚焦重要部分。二者结合,既能增强特征提取能力,又能提高模型适应性和性能。且在图像处理、语音处理和时间序列分析等领域都能用。
Window-based Channel Attention for Wavelet-enhanced Learned Image Compression
内容:这篇文章介绍了一种用于小波增强学习图像压缩的窗口式信道注意力方法。作者提出了一种新的空-信道混合(SCH)框架,通过结合残差块和空间注意力模块来学习局部信息,以及通过窗口式信道注意力模块来学习全局信息。此外,文章还整合了离散小波变换(DWT)来进一步扩大感受野,提高模型的性能。实验结果表明,该方法在四个标准数据集上实现了最先进的性能,与VTM-23.1相比,BD率降低了18.54%至24.71%。
WMANet: Wavelet-Based Multi-Scale Attention Network for Low-Light Image Enhancement
内容:WMANet 是一种基于小波变换的多尺度注意力网络,旨在用于低光照图像增强。该网络通过结合小波变换的多尺度分析能力和注意力机制,有效地改善了在低光照条件下拍摄的图像质量,提高了图像的亮度和细节清晰度。
Wavelet-based Fourier Information Interaction with Frequency Diffusion Adjustment for Underwater Image Restoration
内容:这篇文章介绍了一种用于水下图像增强的新框架WF-Diff,它通过结合小波变换和傅里叶变换的特性以及扩散模型的能力,来改善水下图像的质量。WF-Diff框架包含两个可分离的网络:基于小波的傅里叶信息交互网络(WFI2-net)和频率残差扩散调整模块(FRDAM),旨在充分利用频率域信息,提高水下图像的细节和纹理质量,并在实际水下图像数据集上展示了其优越的性能。
Flight trajectory prediction enabled by time frequency wavelet transformer
内容:文章介绍了一种基于小波变换的飞行轨迹预测框架(WTFTP),该框架通过时间频率分析来支持轨迹预测。研究者们开发了一种编码器-解码器神经网络架构来估计小波分量,专注于有效建模全局飞行趋势和局部运动细节。通过构建真实世界的数据集来验证所提出方法的有效性,实验结果表明该框架比其他比较基线具有更高的准确性,特别是在具有机动控制的爬升和下降阶段,获得了改进的预测性能。研究还确认了时间频率分析在飞行轨迹预测任务中的有效性。
Wavelet Convolutions for Large Receptive Fields
内容:文章介绍了一种名为WTConv的新型卷积层,它利用小波变换(Wavelet Transform)来实现在不显著增加参数量的情况下扩大卷积神经网络(CNNs)的感受野。WTConv层可以作为现有架构中的深度可分离卷积的替代品,通过在不同频率子带上执行小 kernel 卷积来有效地捕捉低频信息,从而提高网络对形状的响应能力,并在图像分类、语义分割和目标检测等多个视觉任务中表现出更好的性能和鲁棒性。