今天给大家推荐一个涨点发顶会的好方向:全局特征+部分特征。这俩热点的结合可以轻松实现“1+1>2”的效果。
结合全局特征和部分特征可以提供更全面的数据分析。全局特征提供了整体的上下文信息,而部分特征提供了局部的详细信息。这种组合可以用于提高识别的准确性和鲁棒性。
在实际应用中,例如在复杂的场景识别或物体识别任务中,可能需要同时使用全局特征和部分特征来提高性能。例如,在自动驾驶系统中,全局特征可以帮助识别道路的整体结构,而部分特征可以帮助识别道路上的特定物体,如行人、车辆等。
这种特征的组合使用可以提高系统的适应性和准确性,使其能够更好地理解和处理复杂的数据。
我整理出 多篇最新论文,并附上开源代码,方便大家复现找灵感!
需要的同学私信我
回复“全局特征+部分特征”即可全部领取
论文精选
论文1:MobileViTv3: Mobile-Friendly Vision Transformer with Simple and Effective Fusion of Local, Global and Input Features
MobileViTv3:具有简单有效的局部、全局和输入特征融合的移动友好型视觉Transformer
方法
-
MobileViTv3模块:提出了一种新的MobileViTv3模块,通过简单有效的特征融合来改进MobileViTv1和MobileViTv2。
-
1x1卷积替换3x3卷积:在融合块中使用1x1卷积替代3x3卷积,以简化学习任务。
-
局部和全局特征融合:在融合块中结合局部和全局特征,而不是输入和全局特征。
-
输入特征残差连接:在融合块的最终输出中添加输入特征,以引入残差连接。