登上Nature正刊,双buff在身!!!全局特征+局部特征!

今天给大家推荐一个涨点发顶会的好方向:全局特征+部分特征。这俩热点的结合可以轻松实现“1+1>2”的效果。

结合全局特征和部分特征可以提供更全面的数据分析。全局特征提供了整体的上下文信息,而部分特征提供了局部的详细信息。这种组合可以用于提高识别的准确性和鲁棒性。

在实际应用中,例如在复杂的场景识别或物体识别任务中,可能需要同时使用全局特征和部分特征来提高性能。例如,在自动驾驶系统中,全局特征可以帮助识别道路的整体结构,而部分特征可以帮助识别道路上的特定物体,如行人、车辆等。

这种特征的组合使用可以提高系统的适应性和准确性,使其能够更好地理解和处理复杂的数据。

我整理出 多篇最新论文,并附上开源代码方便大家复现找灵感!

需要的同学私信

回复“全局特征+部分特征”即可全部领取


论文精选

论文1:MobileViTv3: Mobile-Friendly Vision Transformer with Simple and Effective Fusion of Local, Global and Input Features

MobileViTv3:具有简单有效的局部、全局和输入特征融合的移动友好型视觉Transformer

方法
  • MobileViTv3模块:提出了一种新的MobileViTv3模块,通过简单有效的特征融合来改进MobileViTv1和MobileViTv2。

  • 1x1卷积替换3x3卷积:在融合块中使用1x1卷积替代3x3卷积,以简化学习任务。

  • 局部和全局特征融合:在融合块中结合局部和全局特征,而不是输入和全局特征。

  • 输入特征残差连接:在融合块的最终输出中添加输入特征,以引入残差连接。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值