(ECCV 2022)即插即用高效长距离注意力机制模块,涨点涨点涨点

题目:Efficient Long-Range Attention Network for Image Super-resolution

论文地址:https://arxiv.org/pdf/2203.06697

创新点

  • 高效的长程注意力模块(ELAB):提出了一种新型的长程注意力模块,用于建模图像中的长程依赖性,从而提升图像超分辨率的性能。

  • 简洁且高效的网络结构:设计了一个称为ELAN的网络,通过级联多个ELAB模块实现超分辨率映射,网络结构简洁且计算复杂度低,显著减少了冗余操作。

  • Shift Convolution(移位卷积)和组内多尺度自注意力(GMSA)结合:使用Shift Convolution扩大感受野,并在非重叠的特征组上使用不同窗口大小的自注意力计算,既提高了长程依赖的建模能力,又控制了计算资源的使用。

  • 共享注意力机制:提出了共享注意力机制,加速连续GMSA模块的计算,从而减少计算开销,显著提升推理效率。

方法

整体结构

       该论文提出的ELAN模型整体结构包括三个主要部分:首先,通过浅层特征提取模块从低分辨率图像中提取局部特征;接着,利用由多个高效长程注意力模块(ELAB)组成的深层特征提取模块,结合移位卷积和组内多尺度自注意力,捕捉图像中的局部和长程依赖性;最后,通过高分辨率重建模块将提取的深层和浅层特征融合,生成高质量的高分辨率图像。

  • 浅层特征提取模块:这个模块由一个3×3的卷积层组成,主要用于从输入的低分辨率图像中提取局部特征。输出特征记为 XsX_s,用于进一步的深层特征提取。

  • 深层特征提取模块(由多个ELAB模块组成):深层特征提取模块由M个级联的高效长程注意力模块(ELAB)组成。ELAB模块包括:

    • 局部特征提取:通过两个移位卷积(shift-conv)操作提取局部结构信息,移位卷积具有较大的感受野,且计算复杂度与1×1卷积相同。

    • 组内多尺度自注意力(GMSA):将特征分成不同组,在不同窗口大小上计算自注意力,从而实现长程依赖的建模。

    • 共享注意力机制:相邻的自注意力模块共享注意力得分,以减少计算资源并加速推理过程。

    • 高分辨率图像重建模块:该模块通过一个3×3卷积和像素混洗(Pixel Shuffle)操作将深层提取的特征 XdX_d 和浅层特征 XsX_s 结合,最终重建出高分辨率图像。

即插即用模块作用

ELAB 作为一个即插即用模块,主要适用于:

  • 图像超分辨率(SR)任务:ELAB模块能够有效提取图像中的局部和全局特征,捕捉长程像素依赖性,从而在图像超分辨率任务中显著提升图像细节恢复和质量。

  • 低计算资源场景:ELAB通过共享注意力机制和移位卷积大幅减少计算资源的消耗,因此特别适合需要高效推理的场景,如实时图像处理、移动设备和嵌入式系统中的应用。

  • 长程依赖性建模任务:除了图像超分辨率,ELAB还可以用于任何需要长程依赖建模的视觉任务,如图像增强、去噪、图像修复等。其多尺度自注意力机

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值