题目描述:
有如下一个双人游戏:N(2 <= N <= 100)个正整数的序列放在一个游戏平台上,游戏由玩家1开始,两人轮流从序列的任意一端取一个数,取数后该数字被去掉并累加到本玩家的得分中,当数取尽时,游戏结束。以最终得分多者为胜。
编一个执行最优策略的程序,最优策略就是使玩家在与最好的对手对弈时,能得到的在当前情况下最大的可能的总分的策略。你的程序要始终为第二位玩家执行最优策略。
PROGRAM NAME: game1
INPUT FORMAT:
(file game1.in)
第一行: 正整数N, 表示序列中正整数的个数。
第二行至末尾: 用空格分隔的N个正整数(大小为1-200)。
OUTPUT FORMAT:
(file game1.out)
只有一行,用空格分隔的两个整数: 依次为玩家一和玩家二最终的得分。
SAMPLE INPUT
6 4 7 2 9 5 2
SAMPLE OUTPUT
18 11
时间限制: 1000ms
空间限制: 128MB
提示:
博弈问题,可以使用动态规划求解。
状态定义:用F[i][j]表示第一个玩家先取时,在第i到第j的子序列中能拿到的最高分;用S[i][j]表示第i到第j的子序列中所有数字的和;用num[i]表示第1到第n的序列中第i个数。
边界条件:F[i][i]=num[i]
状态转移方程:
F[i][j]=max{num[i]+S[i+1][j]-F[i+1][j],num[j]+S[i][j-1]-F[i][j-1]}
结果
p1=F[1][n];
p2=S[1][n]-F[1][n];
解析:
num[i]+S[i+1][j]-F[i+1][j]表示的是,p1拿第i到第j最左边的数,然后轮到p2在第i+1到第j的序列中先取,会剩下S[i+1][j]-F[i+1][j],这些归p1。
代码如下:
#include<stdio.h>
#include<algorithm>
using namespace std;
int n,s[101]={},x[101][101]={},a[101]={};
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
s[i]=s[i-1]+a[i];
x[i][i]=a[i];
}
for(int i=n-1;i>=1;i--){
for(int j=i+1;j<=n;j++){
x[i][j]=s[j]-s[i-1]-min(x[i+1][j],x[i][j-1]);
}
}
printf("%d %d",x[1][n],s[n]-x[1][n]);
}