因果推断中的匹配与倾向得分方法详解
1. 匹配基础
1.1 匹配概述
匹配方法要求处理变量和结果变量之间的关系无混杂因素。为了获得因果效应的无偏估计,需要确保所有混杂因素都被观察到并包含在匹配特征集中。此外,绘制有向无环图(DAG)有助于避免因控制对撞机而引入偏差。匹配方法不关心数据的线性性,可用于线性和非线性数据。
1.2 处理效应
使用匹配方法可以计算多种因果效应,常见的有平均处理效应(ATE)、处理组的平均处理效应(ATT)和控制组的平均处理效应(ATC)。
- ATE :
- 公式:$ATE = \frac{1}{N} \sum_{i} \tau_{i}$
- 其中,$N$ 是总观测数,$\tau_{i} = Y_{i}^{1} - Y_{i}^{0}$,$Y_{i}^{1}$ 是处理下的结果,$Y_{i}^{0}$ 是未处理下的结果。
- ATT :
- 公式:$ATT = \frac{1}{N_{T=1}} \sum_{i_{T=1}} \tau_{i}$
- 这里,$N_{T=1}$ 是接受处理的单元数,$i_{T=1}$ 是这些单元的索引。
- ATC :
- 公式:$ATC = \frac{1}{N_{T=0}} \sum_{i_{T=0}} \tau_{i}$
- 注意,$ATE$ 是 $ATT$ 和 $ATC$ 的平均值。
1.3 匹配估计量
不同的因果效应估计会影响匹配估计量的定义。
超级会员免费看
订阅专栏 解锁全文
1164

被折叠的 条评论
为什么被折叠?



