17、因果推断中的匹配与倾向得分方法详解

因果推断中的匹配与倾向得分方法详解

1. 匹配基础

1.1 匹配概述

匹配方法要求处理变量和结果变量之间的关系无混杂因素。为了获得因果效应的无偏估计,需要确保所有混杂因素都被观察到并包含在匹配特征集中。此外,绘制有向无环图(DAG)有助于避免因控制对撞机而引入偏差。匹配方法不关心数据的线性性,可用于线性和非线性数据。

1.2 处理效应

使用匹配方法可以计算多种因果效应,常见的有平均处理效应(ATE)、处理组的平均处理效应(ATT)和控制组的平均处理效应(ATC)。
- ATE
- 公式:$ATE = \frac{1}{N} \sum_{i} \tau_{i}$
- 其中,$N$ 是总观测数,$\tau_{i} = Y_{i}^{1} - Y_{i}^{0}$,$Y_{i}^{1}$ 是处理下的结果,$Y_{i}^{0}$ 是未处理下的结果。
- ATT
- 公式:$ATT = \frac{1}{N_{T=1}} \sum_{i_{T=1}} \tau_{i}$
- 这里,$N_{T=1}$ 是接受处理的单元数,$i_{T=1}$ 是这些单元的索引。
- ATC
- 公式:$ATC = \frac{1}{N_{T=0}} \sum_{i_{T=0}} \tau_{i}$
- 注意,$ATE$ 是 $ATT$ 和 $ATC$ 的平均值。

1.3 匹配估计量

不同的因果效应估计会影响匹配估计量的定义。

Matlab基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率内容概要:本文围绕Matlab在电力系统优化控制领域的应用展开,重点介绍了基于粒子群优化算法(PSO)和鲁棒MPPT控制器提升光伏并网效率的技术方案。通过Matlab代码实现,结合智能优化算法先进控制策略,对光伏发电系统的最大功率点跟踪进行优化,有效提高了系统在不同光照条件下的能量转换效率和并网稳定性。同时,文档还涵盖了多种电力系统应用场景,如微电网调度、储能配置、鲁棒控制等,展示了Matlab在科研复现工程仿真中的强大能力。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事新能源系统开发的工程师;尤其适合关注光伏并网技术、智能优化算法应用MPPT控制策略研究的专业人士。; 使用场景及目标:①利用粒子群算法优化光伏系统MPPT控制器参数,提升动态响应速度稳态精度;②研究鲁棒控制策略在光伏并网系统中的抗干扰能力;③复现已发表的高水平论文(如EI、SCI)中的仿真案例,支撑科研项目学术写作。; 阅读建议:建议结合文中提供的Matlab代码Simulink模型进行实践操作,重点关注算法实现细节系统参数设置,同时参考链接中的完整资源下载以获取更多复现实例,加深对优化算法控制系统设计的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值