P22:Sequential以及搭建网络小实战(Pytorch小土堆学习笔记)

这里拿实现vgg16模型来举例

下图为vgg16模型的网络图谱 

 这个是计算padding的解题思路,当然也可以口算

 第一种形式:

import torch
from torch import nn
from torch.nn import Conv2d,MaxPool2d,Flatten,Linear
from torch.utils.tensorboard import SummaryWriter
#相对繁琐的一种方式:
class qiqi(nn.Module):
    def __init__(self):
        super(qiqi, self).__init__()
        self.conv1=Conv2d(3,32,5,padding=2)#padding可以根据公式算出来
        self.maxpool1=MaxPool2d(2)
        self.conv2=Conv2d(32,32,5,padding=2)
        self.maxpool2=MaxPool2d(2)
        self.conv3=Conv2d(32,64,5,padding=2)
        self.maxpool3=MaxPool2d(2)
        self.flatten=Flatten()
        self.linear1=Linear(1024,64)#1024是池化后展平的大小,算不出来可以print一下就知道了
        self.linear2=Linear(64,10)

    def forward(self,x):
        x=self.conv1(x)
        x=self.maxpool1(x)
        x=self.conv2(x)
        x=self.maxpool2(x)
        x=self.conv3(x)
        x=self.maxpool3(x)
        x=self.flatten(x)
        x=self.linear1(x)
        x=self.linear2(x)
        return x
#验证神经网络是否正确
qq=qiqi()
print(qq)
input = torch.ones((64,3,32,32))#64张3通道32*32的单位1矩阵
output=qq(input)
print(output.shape)

 

 第二种使用Sequencital:

import torch
from torch import nn
from torch.nn import Conv2d,MaxPool2d,Flatten,Linear,Sequential#这边要引入一下
from torch.utils.tensorboard import SummaryWriter
#相对繁琐的一种方式:
class qiqi(nn.Module):
    def __init__(self):
        super(qiqi, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),    #注意有逗号
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self,x):
        x=self.model1(x)
        return x
qq=qiqi()
print(qq)
input = torch.ones((64,3,32,32))#64张3通道32*32的单位1矩阵
output=qq(input)


writer = SummaryWriter("nn_seq(vgg16)")
writer.add_graph(qq,input)
writer.close()

tensorboard中打开所示:

 

 可以看到每一层的关系和参数

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值