矩阵论极简笔记(2):列空间、正交补、零空间、行空间

本篇博客主要讲解线性代数的4个基本空间,介绍了子空间、子空间的直和、代数补、正交补、列空间等概念,并通过多个例子进行说明。还阐述了投影的性质,以及复数空间的分解。此外,在列空间部分提及了其在反卷积和方程组求解中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇讲解线性代数的4个基本空间

Vector space, subspace, linear space 是同一个东东

子空间(subspace)可以想象成一个超平面,根据线性空间的定义,0元素必须在超平面上才是子空间。

上式不是子空间。因为\alpha \boldsymbol{x}=[\alpha x_1,\alpha x_2, \alpha x_3]=[0,0,0],if \alpha = 0

直线当然是平面的子空间,直线、平面当然是三维空间的子空间。

例1

频域是有限带宽的复数空间的信号x是子空间:

子空间的直和direct sum

Span你理解正确了吗?

span{S} = {set of all possible linear combinations of vectors in S}

例2

the set

虽然向量集合是一条直线,但是张成的子空间是平面。

例3

所以,集合并集union不等于集合加和sum。该例并集是一个点和y轴,sum为过(1,0)平行y轴的一条直线。

Two subspaces are called disjoint when the only vector common to both is 0. When two subspaces S and T are disjoint, then their sum is called a direct sum (denoted S ⊕ T ).

代数补algebraic complements

正交补(orthogonal complement)

可见,代数补并不是集合补集。

T和S是R2的代数补,T和Q也是R2的代数补,

因为,a(1,0)+b(1,1)=(a+b,b)

正交补(orthogonal complement)

正交补定义为:S^\perp =\left \{ \boldsymbol{x} \in\mathbb{ C}^{n} : \boldsymbol{x}^H\boldsymbol{s}=0\forall \boldsymbol{s} \in S \right \}

例4

证明:S是子空间,那么其正交补也是子空间。

以上,即得到一个重要的向量分解思想:向量+其正交补,且唯一。

上式证明:

\forall x \in \mathbb{C}^n,P是子空间S的投影算子

正交补的重要性质

根据定义,\mathbb{C}^{n}的正交补只有0元素。

列空间Range space: Subspaces Associated with Linear Maps

例5 

固定FIR滤波器响应, h, x为复数空间任意值,所有可能的信号输出y是子空间:

所以y属于R(H),那就存在一个信号x,卷积得到y。这在反卷积求x具有应用意义。

列空间还有一个典型应用就方程组求解,对于Ax=b,显然b \in range(A),方程组有解

上述定理当然须m ≤ n,即方程个数不能多于未知数,否则可能无解也可能有解;且须行满秩,否则会出现0 \boldsymbol{x}=const,无解。

A是行满秩,一定有解,包括无穷多解。只有列大于等于行才可能行满秩。

A是列满秩序,无解或有唯一解。只有行大于等于列可能列满秩。

行满秩,且行比列少,解系肯定有自由变量。无穷多解。

列满秩,存在唯一映射  ,且b不可能为0,即A的零空间N(A)={0}

对于Ax=b的解结构可称之为仿射子空间

投影

投影的重要性质

  1. 投影唯一,矩阵P是投影算子,Px是投影(垂足)
  2. 子空间S垂足的投影还是本身。P(s)=s ,\forall s\in S
  3. 子空间S的投影算子P是一个矩阵,在正交补S^{\perp }的投影=0。P_{S \perp}(s)=0,\forall s \in S
  4. 子空间S的投影算子P,那么I-P是正交补S^{\perp }的投影算子,因为Ix-Px\in S^{\perp },所以I-P是正交补S^{\perp }的投影算子。
  5. R(P)=S
  6. P^2=P^H=P

4个基本子空间

复数空间可以分解为矩阵A的列空间+矩阵A的列空间的正交补,而矩阵A的列空间的正交补=矩阵A转置的零空间。

附录  灵魂问答

矩阵乘法怎么用希格码求和表达?

\boldsymbol{x }\in \mathbb{C}^n,\boldsymbol{y}\in \mathbb{C}^m

矩阵转置怎么用元素表示?

以及

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞行codes

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值