ROS——Teb算法的优化

本文介绍了ROS的Teb Local Planner,一种针对全局路径规划的局部优化算法。Teb通过调整时间弹性带来优化机器人的运动轨迹,避免碰撞。文章详细讨论了Teb算法的工作原理、优化目标和参数设置,包括障碍物距离、时间最短和机器人运动学约束。还提到了实际应用中遇到的问题,如小车卡弯和路径规划异常,以及如何调整参数以优化性能。
摘要由CSDN通过智能技术生成

一、简介

 “TEB”全称Time Elastic Band(时间弹性带)Local Planner,该方法针对全局路径规划器生成的初始轨迹进行后续修正(modification),从而优化机器人的运动轨迹,属于局部路径规划。

关于eletic band(橡皮筋)的定义:连接起始、目标点,并让这个路径可以变形,变形的条件就是将所有约束当做橡皮筋的外力

二、说明

局部路径规划之Teb

起始点、目标带你状态由全局规划,中间插入N个控制节点来改变橡皮筋的状态控制点,在点与点之间定义运动时间Time。

这个路径可以变形,变形的条件就是将所有约束当做橡皮筋的外力

注意每个目标函数只与几个连续状态有关,而非整条band。

 当我们设置目标时,小车的目的地是靠近障碍物的,但是如果我们小于我们的障碍物距离最小距离,我们就需要往外拉,这就是我们的类橡皮筋过程

约束目标函数:

 

 

 

 优化问题:

Teb优化问题实质上是一个优化问题,大多数目标是基于局部的,只与一小部分参数相关,因为他们只依赖于几个连续的机器人

TEB生成的局部轨迹由一系列带有时间信息的离散位姿组成,g2o算法优化的目标就是这些离散的位姿,同时设计一条时间最短,距离最短,远离障碍物等目标,同时限制速度与加速度使轨迹满足机器人运动学。

整体的规划为:

全局路径————加入约束————g2o优化————速度指令

参数:

# Trajectory

teb_autosize: True #优化期间允许改变轨迹时域长度

dt_ref: 0.3 #局部路径规划解析度(0.01~1.0) 默认为0.3 (两个相邻位姿之间的时间_时间分辨率)

(可以设置0.45,其他保持默认)

dt_hysteresis: 0.1 #允许浮动范围

global_plan_overwrite_orientation: True #覆盖全局路 径中局部路点朝向

max_global_plan_lookahead_dist: 3.0 #全局优化子集最大长度

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WanGxxxx.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值