一、基础概念
小提琴图是箱线图与核密度图的结合,箱线图展示了分位数的位置,核密度图则展示了任意位置的密度,通过小提琴图可以知道哪些位置的数据点聚集的较多,因其形似小提琴而得名。
其外围的曲线宽度代表数据点分布的密度,中间的箱线图则和普通箱线图表征的意义是一样的,代表着中位数、上下分位数、极差等。
二、语法
seaborn.violinplot(x=None, y=None, hue=None, data=None,
order=None, hue_order=None, bw='scott',
cut=2, scale='area', scale_hue=True, gridsize=100,
width=0.8,inner='box', split=False, dodge=True,
orient=None, linewidth=None,color=None, palette=None,
saturation=0.75, ax=None, **kwargs)
三、参数详解
-
bw:{‘scott’, ‘silverman’, float}
内置变量值或浮点数的比例因子都用来计算核密度的带宽。实际的核大小由比例因子乘以每个分箱内数据的标准差确定。 -
cut:{float}
以带宽大小为单位的距离,以控制小提琴图外壳延伸超过内部极端数据点的密度。设置为 0 以将小提琴图范围限制在观察数据的范围内。(例如,在 ggplot 中具有与 trim=True 相同的效果) -
scale:{“area”, “count”, “width”}
该方法用于缩放每张小提琴图的宽度。若为 area ,每张小提琴图具有相同的面积。若为 count ,小提琴的宽度会根据分箱中观察点的数量进行缩放。若为 width ,每张小提琴图具有相同的宽度。 -
scale_hue:{bool}
当使用色调参数 hue 变量绘制嵌套小提琴图时&