【机器学习】八、K近邻算法原理

本文深入探讨了K近邻(KNN)算法的原理,包括其思想、算法步骤、参数选择和注意事项。KNN通过计算测试点与训练数据之间的距离来分类,选择合适的k值至关重要。k值的大小会影响分类结果,过大可能导致模糊分类,过小则易受个别样本影响。文章还提到了特征缩放和k值选择的策略,以及KNN算法的优缺点。
摘要由CSDN通过智能技术生成

一文详解,K近邻算法原理。码字不易,喜欢请点赞,谢谢!!!在这里插入图片描述
一、KNN简介
K近邻(k-NearestNeighbor)算法,简称KNN。KNN是数据挖掘中十分常用的算法,其原理简单。
KNN的思想就是,选取k个最邻近的点,这k个点属于哪类个数最多,则该点就属于哪类。
比如下图,当 k = 3 k=3 k=3时,测试点属于六边形类;而当 k = 5 k=5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值