AI面临的最大问题是什么?期望过高?效率太低?难用?还是缺少好想法?

AI部署增长率低于预期,聊天机器人应用前景广阔。AI数字员工能处理企业中重复工作,如报销、申请、咨询等,降低人力负担。AskBot等平台简化AI应用,降低使用门槛,通过脑图模式实现对话逻辑设计,让非技术人员也能快速打造AI数字员工。AI面临的问题包括技术理解难度高、期望过高和实际应用中的信息鸿沟,需要简化技术、提高透明度和客户参与度。

全球顶级技术智库Gartner的VP Svetlana Sicular 在2019年发布CIO Survey时说,2019年 AI 应用的部署增长率实际上低于去年预测的23%;同时,参与调研的各大CIO表示,已经部署了 AI 的比例从去年的 14%增长到了 19%。同时Gartner 预测,聊天机器人是最受欢迎的 AI 应用之一,到 2023 年员工与应用程序间的交互有 25%将通过语音进行,相比 2019 年的将近 3%大幅增长,这说明以聊天机器人作为内部服务的AI应用前景广阔。

在这里插入图片描述
那么 AI的NLU自然语言理解技术,大家常说的聊天机器人,具备对话能力的AI普及被什么东西拖累了呢?真的是AI应用场景有限吗?会不会,AI或在某个场景被高估?或在某个场景被低估?会不会是身在应用场景的人,不了解AI,不知道AI在某个方面可以轻松的解决问题?

企业的运营是多部门协同的结果,像IT helpdesk,财务,HR,运营,客服这些职位的工作内容中,很多重复的事情其实可以由AI数字员工去做,或辅助人协同完成。

比如,你突然需要报销的时候,某个类怎么报?最新的报销政策你是不是要了解一下?问人,找谁呢,或许不熟或者你熟悉的人也不知道。

你要申请一个配件,填哪个单子?后续流程怎么走?注意事项,要问一下吧?

收银结算遇到问题,出现了英文弹窗,卡这里了,一时找不到人,怎么处理?

联网的打印机报了一个错误代码,但是IT占线打不通,怎么办?

HR要你填一个表,有几个项里面没有说明,你也不确定,需要查一下,问谁呢?

这样的例子举不胜举,某些工作中,固定重复的事情占用了人脑中大量“内存”,处理时间也长,还无法同时并行,唯一的办法就是把这部分重复固定的内容交给AI数字员工去处理,让人投入更复杂、更有挑战和创造性的事情中去。

下图是AI数字员工的一些交互场景:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值