第二章 同步发电机
一、同步发电机在空载情况下定子突然三相短路后的电流波形分析
1、同步发电机的组成及原理
组成
-
定子
装有a、b、c三相电枢绕组
-
转子
装有直流励磁绕组
原理
- 发电机励磁绕组中通入直流电流 i f i_f if,在转子周围产生磁场,定子a、b、c三相绕组切割磁力线,在电枢绕组感应出三相电动势
2、同步发电机发生三相短路
当同步发电机突然三相短路后,电枢绕组的电流将会对转子绕组产生影响,由于定、转子之间的电磁耦合从而造成同步发电机的暂态过程变得复杂
3、同步发电机空载情况下突然三相短路后的电流波形
同步发电机空载情况下,**三相短路后电流波形(图1)**如下图所示,(a)为三相定子电流波形(短路电流),(b)为励磁回路电流波形
由图1可知
- 在突然短路瞬间,定子短路电流和励磁回路电流均不突变,即三相定子电流均为0,励磁回路电流为 i f ∣ 0 ∣ i_{f|0|} if∣0∣(感性回路的电流不发生突变)
- 定子侧短路后三相绕组
- 基频交流分量、直流分量和倍频分量(幅值较小)
- 转子侧短路后励磁绕组
- 直流分量、基频交流分量
- 暂态过程中
- 定子绕组的基频交流分量与转子中直流分量衰减时间常数相同
- 定子侧直流分量与转子中基频交流分量衰减时间常数相同
上图的**短路电流波形的分解(图2)**如下图所示,(a)为三相直流分量,(b)为交流分量包络线的衰减
三相短路电流中的直流分量如图2(a)所示
- 三相直流分量大小不等
- 按照相同的指数规律衰减,最后衰减至0,直流分量的衰减时间常数: T a T_{a} Ta
交流分量如图2(b)所示
- 逐渐衰减,最终衰减为稳态值 I m ∞ I_{m\infty} Im∞,由图可知,短路初始值为 I m ′ ′ I_m'' Im′′,即 I m ′ ′ − I m ∞ I_m''-I_{m\infty} Im′′−Im∞衰减为0
- 该衰减过程按两个时间常数衰减,分别为小的时间常数 T d ′ ′ T_d'' Td′′和大的时间常数 T d ′ T_d' Td′,一开始按照 T d ′ ′ T_d'' Td′′衰减,随后按照 T d ′ T_d' Td′衰减
- 交流分量幅值的表达式:
I
m
(
t
)
=
(
I
m
′
′
−
I
m
′
)
e
−
t
/
T
d
′
′
+
(
I
m
′
−
I
m
∞
)
e
−
t
/
T
d
′
+
I
m
∞
I_{\rm m}(t) =\left( I_{\rm m}^{\prime\prime} - I_{\rm m}^{\prime} \right) \mathrm{e}^{-t/T_{\rm d}^{\prime\prime}}+ \left( I_{\rm m}^{\prime} - I_{\rm m\infty} \right) \mathrm{e}^{-t/T_{\rm d}^{\prime}}+ I_{\rm m\infty}
Im(t)=(Im′′−Im′)e−t/Td′′+(Im′−Im∞)e−t/Td′+Im∞
- 次暂态分量:
I
m
(
t
)
=
(
I
m
′
′
−
I
m
′
)
e
−
t
/
T
d
′
′
I_{\rm m}(t) =\left( I_{\rm m}^{\prime\prime} - I_{\rm m}^{\prime} \right) \mathrm{e}^{-t/T_{\rm d}^{\prime\prime}}
Im(t)=(Im′′−Im′)e−t/Td′′
- 幅值: I m ′ ′ − I m ′ I_{\rm m}^{\prime\prime} - I_{\rm m}^{\prime} Im′′−Im′
- 时间常数: T d ′ ′ T_d'' Td′′(次暂态衰减)
- 暂态分类:
(
I
m
′
−
I
m
∞
)
e
−
t
/
T
d
′
\left( I_{\rm m}^{\prime} - I_{\rm m\infty} \right) \mathrm{e}^{-t/T_{\rm d}^{\prime}}
(Im′−Im∞)e−t/Td′
- 幅值: I m ′ − I m ∞ I_{\rm m}^{\prime} - I_{\rm m\infty} Im′−Im∞
- 时间常数: T d ′ T_d' Td′(暂态衰减)
- 稳态分量: I m ∞ I_{\rm m\infty} Im∞
- 次暂态分量:
I
m
(
t
)
=
(
I
m
′
′
−
I
m
′
)
e
−
t
/
T
d
′
′
I_{\rm m}(t) =\left( I_{\rm m}^{\prime\prime} - I_{\rm m}^{\prime} \right) \mathrm{e}^{-t/T_{\rm d}^{\prime\prime}}
Im(t)=(Im′′−Im′)e−t/Td′′
- 短路后过程:次暂态——暂态——稳态
二、同步发电机稳态运行情况及暂态参数
在进行分析过程中,认为同步发电机为理想电机(假设条件:电力系统暂态分析P25)
在同步发电机暂态过程分析中,主要研究凸极同步发电机,隐极机可作为凸极机的特例。对于凸极机的阻尼绕组,一般在转子的直轴(d轴)和交轴(q轴)上各设置一个等值阻尼绕组,分别为D绕组和Q绕组
1、定子、转子各绕组磁轴、电流的正方向
同步发电机各绕组轴线和电流正方向如下图所示:
如图可知:
- 定子三绕组分别为a、b、c,各相差
12
0
∘
120^\circ
120∘
- 定子绕组各相绕组轴线的正方向为各相绕组磁链的正方向
- 转子极中心线用d轴(直轴)表示,极间轴线用q轴(交轴)表示,q轴超前d轴
9
0
∘
90^\circ
90∘
- 励磁绕组和直轴阻尼绕组磁链的正方向与d轴正方向相同
- 交轴阻尼绕组磁链的正方向与q轴正方向相同
- 励磁绕组f与d轴重合
- 阻尼绕组用两个互相正交的短接绕组等效,与d轴重合的称为D阻尼绕组,与q轴重合的称为Q阻尼绕组
定子各相绕组电流产生的磁通方向与各该相绕组轴线的正方向相反时电流为正值,转子各绕组电流产生的磁通方向与d轴或q轴正方向相同时电流为正值。
- 即定子绕组中正电流产生负磁通,转子绕组中正电流产生正磁通
2、磁链守恒原理及同步发电机双反应原理
磁链守恒原理
- 任何一个闭合的线圈,它的磁链在同一瞬间不能从一个数值跳变到另外一个数值,如果存在外界因素迫使线圈的磁链发生突变,该线圈会感应出一个自由电流分量,从而产生一个反方向磁链抵制外来磁链,以维持原线圈所匝链的磁链不变
- 是对发电机突然短路暂态过程进行物理分析的理论基础
双反应原理
-
电枢反应
同步发电机空载时,定子电流为0,气隙中只有励磁电流建立的磁场。当同步发电机带负荷时,气隙中除了转子磁场外,还存在着由定子三相电流产生的同步旋转的电枢磁动势,从而气隙中的磁动势变成为合成磁动势,从而使气隙中原有的磁动势大小和位置都发生改变
-
前提
对于凸极机,由于结构不对称,同一电枢磁动势作用在不同位置时电枢反应不一样
-
双反应理论
当电枢磁动势 F a F_a Fa作用于交、直轴间的任意位置时,可将其分解为直轴电枢反应分量 F a d F_{ad} Fad和交轴电枢反应分量 F a q F_{aq} Faq,分别求出后再进行叠加
3、同步发电机的参数
a、同步发电机的稳态参数
- 空载电动势
E
q
E_q
Eq
- 励磁电流 i f i_f if产生的主磁通 φ 0 \varphi_0 φ0切割定子绕组,感应出空载电动势
- 当磁路不饱和时, E q E_q Eq与 i f i_f if是线性关系, E q E_q Eq正比于 i f i_f if,即励磁电流的大小决定了空载电动势的大小
- 方向沿q轴时,相量表达式: E q ˙ = j E q \dot{E_q}=jE_q Eq˙=jEq
- 同步电抗
- 直轴同步电抗(
X
d
X_d
Xd)
- 组成: X d = X a d + X σ X_d=X_{ad}+X_{\sigma} Xd=Xad+Xσ (直轴电枢反应电抗 X a d X_{ad} Xad、定子漏抗 X σ X_{\sigma} Xσ)
- 反应d轴方向磁路的磁导,路径包括转子铁心、气隙和定子铁心
- 等效电路: X a d X_{ad} Xad与 X σ X_{\sigma} Xσ串联
- 交轴同步电抗
- 组成: X q = X a q + X σ X_q=X_{aq}+X_{\sigma} Xq=Xaq+Xσ(交轴电枢反应电抗 X a q X_{aq} Xaq、定子漏抗 X σ X_{\sigma} Xσ)
- 反应q轴方向磁路的磁导,路径无转子绕组(忽略阻尼绕组)
- 等效电路: X a q X_{aq} Xaq与 X σ X_{\sigma} Xσ串联
- X q < X d X_q<X_d Xq<Xd
- 直轴同步电抗(
X
d
X_d
Xd)
- 电枢反应电抗
- 直轴电枢反应电抗(
X
a
d
X_{ad}
Xad)
- 由d轴电枢反应磁通 φ a d \varphi_{ad} φad产生,等效为去磁效应
- 满足 E a q = I d X a d E_{aq}=I_dX_{ad} Eaq=IdXad( E a d E_{ad} Ead为电枢反应引起的压降)
- 交轴电枢反应电抗(
E
a
q
E_aq
Eaq)
- 由q轴电枢反应磁通 φ a q \varphi_{aq} φaq产生,无励磁绕组影响
- 满足 E a q = I q X a q E_{aq}=I_qX_{aq} Eaq=IqXaq
- 直轴电枢反应电抗(
X
a
d
X_{ad}
Xad)
- 定子漏抗(
X
σ
X_{\sigma}
Xσ)
- 定子绕组自身电流产生的漏磁通 φ σ \varphi_{\sigma} φσ对应的电抗
- 与电枢反应无关,仅与绕组结构有关
- X d 和 X q X_d和X_q Xd和Xq中均包含 X σ X_{{\sigma}} Xσ
- 端电压方程
- 纯感性负载(
I
d
≠
0
,
I
q
=
0
I_d\not=0,I_q=0
Id=0,Iq=0)
- U q ˙ = E q ˙ − j I d X d \dot{U_q}=\dot{E_q}-jI_dX_d Uq˙=Eq˙−jIdXd
- 纯阻性负载(
I
d
=
0
,
I
q
≠
0
I_d=0,I_q\not=0
Id=0,Iq=0)
- U d ˙ = − j I q X q \dot{U_d}=-jI_qX_q Ud˙=−jIqXq
- 一般负载
- 需叠加d、q轴分量
- 纯感性负载(
I
d
≠
0
,
I
q
=
0
I_d\not=0,I_q=0
Id=0,Iq=0)
- 励磁绕组参数(
X
f
X_f
Xf)
- X f = X f σ + X a d X_f=X_{f\sigma}+X_{ad} Xf=Xfσ+Xad(励磁绕组漏抗 X f σ X_{f\sigma} Xfσ、d轴电枢反应电抗 X a d X_{ad} Xad)
- 反应励磁电流 i f i_f if产生的总磁链(主磁通+漏磁通)
b、同步发电机正常稳态运行时的电压平衡关系及相量图
同步发电机正常稳态运行时的相量图如下图所示:
图(a)为凸极机,图(b)为隐极机
图中参数:
E q ˙ \dot{E_q} Eq˙:空载电动势; U ˙ \dot{U} U˙:发电机端电压; I ˙ \dot{I} I˙:电流; δ \delta δ: E q ˙ 、 U ˙ \dot{E_q}、\dot{U} Eq˙、U˙间的夹角,即功角; φ \varphi φ: U ˙ 、 I ˙ \dot{U}、\dot{I} U˙、I˙间的夹角,即功率因数角
U d ˙ 、 U q ˙ 、 I d ˙ 、 I q ˙ \dot{U_d}、\dot{U_q}、\dot{I_d}、\dot{I_q} Ud˙、Uq˙、Id˙、Iq˙:电压和电流在d、q轴上的分量
x d 、 x q x_d、x_q xd、xq:定子直轴和交轴同步电抗
r r r:定子绕组电阻
计及电阻后,q、d轴电压方程如下所示:
{ E ˙ q = U ˙ q + r I ˙ q + j x d I ˙ d 0 = U ˙ d + r I ˙ d − j x q I ˙ q \begin{cases} \dot{E}_q = \dot{U}_q + r\dot{I}_q + jx_d\dot{I}_d \\ 0 = \dot{U}_d + r\dot{I}_d - jx_q\dot{I}_q \end{cases} {E˙q=U˙q+rI˙q+jxdI˙d0=U˙d+rI˙d−jxqI˙q
且: U ˙ = U ˙ d + U ˙ q \dot{U} = \dot{U}_d + \dot{U}_q U˙=U˙d+U˙q、 I ˙ = I ˙ d + I ˙ q \dot{I} = \dot{I}_d + \dot{I}_q I˙=I˙d+I˙q,将q、d轴电压方程相加,可得图(a)和图(b)相量图所对应的方程,分别为:
E ˙ q = U ˙ + r I ˙ + j x d I ˙ d + j x q I ˙ q \dot{E}_q = \dot{U} + r\dot{I} + jx_d\dot{I}_d + jx_q\dot{I}_q E˙q=U˙+rI˙+jxdI˙d+jxqI˙q(凸极机 x d ≠ x q x_d\not=x_q xd=xq)
E ˙ q = U ˙ + r I ˙ + j x d I ˙ \dot{E}_q = \dot{U} + r\dot{I} + jx_d\dot{I} E˙q=U˙+rI˙+jxdI˙(隐极机 x d = x q x_d=x_q xd=xq)
当忽略 r r r后,方程分别为:
E ˙ q = U ˙ + j x d I ˙ d + j x q I ˙ q \dot{E}_q = \dot{U} + jx_d\dot{I}_d + jx_q\dot{I}_q E˙q=U˙+jxdI˙d+jxqI˙q(凸极机 x d ≠ x q x_d\not=x_q xd=xq)
E ˙ q = U ˙ + j x d I ˙ \dot{E}_q = \dot{U} + jx_d\dot{I} E˙q=U˙+jxdI˙(隐极机 x d = x q x_d=x_q xd=xq)
对于以上两式, U ˙ 、 I ˙ \dot{U}、\dot{I} U˙、I˙可知,分别为 U ˙ = U ∠ 0 ∘ 、 I ˙ = I ∠ − φ \dot{U} = U \angle 0^\circ、\quad \dot{I} = I \angle -\varphi U˙=U∠0∘、I˙=I∠−φ,但其他数据未知
-
对于隐极机
可根据 U ˙ 、 I ˙ \dot{U}、\dot{I} U˙、I˙直接求出 E q ˙ \dot{E_q} Eq˙,进而确定 U d ˙ 、 U q ˙ 、 I d ˙ 、 I q ˙ \dot{U_d}、\dot{U_q}、\dot{I_d}、\dot{I_q} Ud˙、Uq˙、Id˙、Iq˙
-
对于凸极机
不能够直接求出,需借助虚构电动势 E Q ˙ \dot{E_Q} EQ˙
可将凸极机电压公式改写成:
E ˙ q = U ˙ + j x d I ˙ d + j x q I ˙ q = U ˙ + j x d I ˙ d + j x q I ˙ q + j x q I ˙ d − j x q I ˙ d = U ˙ + j x q ( I ˙ q + I ˙ d ) + j ( x d − x q ) I ˙ d = U ˙ + j x q I ˙ + j ( x d − x q ) I ˙ d = E ˙ Q + j ( x d − x q ) I ˙ d \begin{aligned} \dot{E}_q &= \dot{U} + jx_d \dot{I}_d + jx_q \dot{I}_q \\ &= \dot{U} + jx_d \dot{I}_d + jx_q \dot{I}_q + jx_q \dot{I}_d - jx_q \dot{I}_d \\ &= \dot{U} + jx_q (\dot{I}_q + \dot{I}_d) + j(x_d - x_q) \dot{I}_d \\ &= \dot{U} + jx_q \dot{I} + j(x_d - x_q) \dot{I}_d \\ &= \dot{E}_Q + j(x_d - x_q) \dot{I}_d \end{aligned} E˙q=U˙+jxdI˙d+jxqI˙q=U˙+jxdI˙d+jxqI˙q+jxqI˙d−jxqI˙d=U˙+jxq(I˙q+I˙d)+j(xd−xq)I˙d=U˙+jxqI˙+j(xd−xq)I˙d=E˙Q+j(xd−xq)I˙d
其中:
E ˙ Q = U ˙ + j x q I ˙ \dot{E}_Q=\dot{U} + jx_q \dot{I} E˙Q=U˙+jxqI˙
由此即可得出虚构电动势的相量图,相量图如下图所示:
由图可知,虚构电动势 E Q ˙ \dot{E_{Q}} EQ˙的方向在q轴上,故可通过求出 E Q ˙ \dot{E_{Q}} EQ˙来确定q轴的方向,进而求出其他待求量。
c、忽略阻尼绕组时的发电机暂态电动势和暂态电抗
-
短路瞬间过程分析
三相短路后,定子电流交流分量增大 ——> 定子绕组旋转磁动势增大 ——> 定子增大的磁通试图穿过励磁绕组(匝链励磁绕组) ——> 由于磁链守恒,励磁绕组感应出反向直流电流 Δ i f α \Delta i_{f\alpha} Δifα ——> 总的励磁电流 i f ∣ 0 ∣ + Δ i f α i_{f|0|}+\Delta i_{f\alpha} if∣0∣+Δifα ——> 对应的空载电动势 E q 0 E_{q0} Eq0突变,突变量 Δ E q 0 = x a d Δ i f α \Delta E_{q0}=x_{ad}\Delta i_{f\alpha} ΔEq0=xadΔifα,抵制磁通的穿入 ——> 迫使磁路路径发生改变,改走漏磁路径
∣ 0 ∣ |0| ∣0∣:短路前瞬间, 0 0 0:短路后瞬间 -
参数变化
- 励磁电流突变 ——> 暂态电动势 E q ′ E_q^{'} Eq′
- 电枢反应磁通路径的变化 ——> 暂态电抗 X d ′ X_d' Xd′
-
暂态电动势 E q ’ E_q^{’} Eq’
- 短路前后保持不变
- 用于计算短路电流初始量
- E q ’ = E q 0 + Δ E q 0 , Δ E q 0 = x a d Δ i f α E_q^{’}=E_{q0}+\Delta E_{q0},\Delta E_{q0}=x_{ad}\Delta i_{f\alpha} Eq’=Eq0+ΔEq0,ΔEq0=xadΔifα
-
暂态电抗 X d ’ X_d^{’} Xd’
-
X
d
’
=
x
σ
+
x
f
σ
x
a
d
x
f
σ
+
x
a
d
=
x
σ
+
x
a
d
′
X_d^{’}=x_\sigma+\frac{x_{f\sigma}x_{ad}}{x_{f\sigma}+x_{ad}}=x_\sigma+x_{ad}^{'}
Xd’=xσ+xfσ+xadxfσxad=xσ+xad′
- x σ x_\sigma xσ:定子漏抗
- x a d ’ x_{ad}^{’} xad’:暂态直轴电枢反应电抗
- 交轴暂态电抗 —— x q ’ = x q x_q^{’}=x_q xq’=xq
-
X
d
’
=
x
σ
+
x
f
σ
x
a
d
x
f
σ
+
x
a
d
=
x
σ
+
x
a
d
′
X_d^{’}=x_\sigma+\frac{x_{f\sigma}x_{ad}}{x_{f\sigma}+x_{ad}}=x_\sigma+x_{ad}^{'}
Xd’=xσ+xfσ+xadxfσxad=xσ+xad′
d、计及阻尼绕组时发电机的次暂态电动势和次暂态电抗
因为计及阻尼绕组,所以转子d轴上有两个绕组,一个为励磁绕组,一个为阻尼绕组
-
物理过程分析
三相短路后,定子电流突增产生的磁链会同时匝链励磁绕组和阻尼绕组 ——> 由于磁链守恒,励磁绕组和阻尼绕组共同维持磁链不变 ——> 从而定子电枢反应磁通被迫绕开转子绕组,改走漏磁路径
-
参数变化
- 转子绕组磁链守恒 ——> 次暂态电动势 E q ” 、 E d " E_q^{”}、E_d^{"} Eq”、Ed"
- 电枢反应路径受限 ——> 次暂态电抗 x d ” 、 x q ” x_d^{”}、x_q^{”} xd”、xq”
-
次暂态电动势
-
直轴次暂态电动势 E ˙ d 0 ” \dot{E}_{d0}^{”} E˙d0”
E ˙ d 0 ” = E ˙ d ∣ 0 ∣ ” \dot{E}_{d0}^{”}=\dot{E}_{d|0|}^{”} E˙d0”=E˙d∣0∣”
E ˙ d 0 ” = U ˙ d ∣ 0 ∣ + j I ˙ q ∣ 0 ∣ x q ” \dot{E}_{d0}^{”}=\dot{U}_{d|0|}+j\dot{I}_{q|0|}x_q^{”} E˙d0”=U˙d∣0∣+jI˙q∣0∣xq”
-
交轴次暂态电动势 E ˙ q 0 ” \dot{E}_{q0}^{”} E˙q0”
E ˙ q 0 ” = E ˙ q ∣ 0 ∣ ” \dot{E}_{q0}^{”}=\dot{E}_{q|0|}^{”} E˙q0”=E˙q∣0∣”
E ˙ q 0 ” = U ˙ q ∣ 0 ∣ + j I ˙ d ∣ 0 ∣ x d ” \dot{E}_{q0}^{”}=\dot{U}_{q|0|}+j\dot{I}_{d|0|}x_d^{”} E˙q0”=U˙q∣0∣+jI˙d∣0∣xd”
-
-
次暂态电抗
-
直轴次暂态电抗 E d ” E_d^{”} Ed”
E d ” = x σ + 1 1 x a d + 1 x f σ + 1 x D σ E_d^{”}=x_\sigma+\frac{1}{\frac{1}{x_{ad}}+\frac{1}{x_{f\sigma}}+\frac{1}{x_{D\sigma}}} Ed”=xσ+xad1+xfσ1+xDσ11
定、转子等效为三绕组变压器,如下图所示:
图(a)为等值三绕组变压器,图(b)为等效电路
-
交轴次暂态电抗 E q ” E_q^{”} Eq”
X q ′ ′ = X σ + X a q X Q σ X a q + X Q σ X''_q = X_\sigma + \frac{X_{aq}X_{Q\sigma}}{X_{aq} + X_{Q\sigma}} Xq′′=Xσ+Xaq+XQσXaqXQσ
定子和阻尼绕组可等效为双绕组变压器,如下图所示:
图(a)为等值三绕组变压器,图(b)为等效电路
-
三、同步发电机空载突然三相短路电流分析
1、同步发电机突然短路后定子电流的分析
短路瞬间物理过程(不考虑发电机的阻尼绕组)
-
短路前状态
发电机空载运行(定子电流为0),励磁电流产生主磁通,定子绕组感应出空载电动势。
-
短路后状态
-
定子绕组产生三相交流分量( i a ω 、 i b ω 、 i c ω i_{a\omega}、i_{b\omega}、i_{c\omega} iaω、ibω、icω),用于抵消主磁通的变化,阻止磁链突变
-
定子绕组产生三相直流分量( Δ i a α 、 Δ i b α 、 Δ i c α \Delta i_{a\alpha}、\Delta i_{b\alpha}、\Delta i_{c\alpha} Δiaα、Δibα、Δicα),三相幅值不等但相加为零,用于维持短路瞬间定子绕组磁链不变
-
交流分量与主磁链反向(去磁效应),直流分量与初始磁链反向(维持守恒)
-
-
二倍频波动
定子三相绕组中直流分量所合成的静止磁动势与转子的直轴与交轴的磁阻不相同,频率两倍于基频,即直流电流不是恒定的,幅值以两倍频波动
-
短路瞬间电流为零
2、同步发电机突然短路后励磁绕组电流的分析
-
短路前状态
- 定子绕组:空载,电流为零
- 励磁绕组:存在恒定的励磁电流 i f ∣ 0 ∣ i_{f|0|} if∣0∣,产生空载电动势 E q 0 E_{q0} Eq0
-
短路后状态
- 定子绕组
- 交流分量 i i ω i_{i\omega} iiω:三相对称,产生与转子同步旋转的电枢反应磁动势,
- 直流分量 Δ i i α \Delta i_{i\alpha} Δiiα:三相不对称,合成静止磁动势,被励磁绕组以 ω 0 \omega_0 ω0转速旋转切割
- 倍频分量 Δ i i 2 ω \Delta i_{i2\omega} Δii2ω:由转子侧交流分量 Δ i f ω \Delta i_{f\omega} Δifω的脉动磁场感应产生
- 励磁绕组(转子)
- 直流分量 Δ i f α \Delta i_{f\alpha} Δifα:阻止d轴电枢反应磁链 ψ a d \psi_{ad} ψad穿过励磁绕组,维持励磁绕组磁链守恒
- 交流分量 Δ i f ω \Delta i_{f\omega} Δifω:单相基频,因磁链绕组以 ω 0 \omega_0 ω0转速切割磁动势
- 磁链守恒方程
- ψ f i = − ( ψ a d + ψ f ω ) \psi_{fi}=-(\psi_{ad}+\psi_{f\omega}) ψfi=−(ψad+ψfω)
- ψ a d \psi_{ad} ψad:d轴电枢反应磁链; ψ f ω \psi_{f\omega} ψfω:定子电流分量引起的转子交流分量磁链
- 定子绕组
-
电流分量关系
定子电流与转子电流各分量间的关系如下图所示:
各对应分量相互依存、相互影响
3、短路过程中短路电流各分量的衰减规律
- 短路电流分量的组成
- 定子侧
- 交流分量 i i ω i_{i\omega} iiω
- 直流分量 Δ i i α \Delta i_{i\alpha} Δiiα
- 倍频分量 Δ i i 2 ω \Delta i_{i2\omega} Δii2ω
- 转子侧
- 直流分量 Δ i f α \Delta i_{f\alpha} Δifα
- 交流分量 Δ i f ω \Delta i_{f\omega} Δifω
- 定子侧
- 衰减规律与时间常数
- 定子侧直流分量
Δ
i
i
α
\Delta i_{i\alpha}
Δiiα衰减
- 无源直流分量,流过电阻消耗能量,最终衰减至0
- 时间常数 T a T_a Ta:取决于定子回路的电阻和从定子侧看向转子侧的等值电感, T a = L a R a T_a=\frac{L_a}{R_a} Ta=RaLa
- Δ i i α \Delta i_{i\alpha} Δiiα衰减 ——> Δ i f ω \Delta i_{f\omega} Δifω和 Δ i i 2 ω \Delta i_{i2\omega} Δii2ω同步衰减
- 转子直流分量
Δ
i
f
α
\Delta i_{f\alpha}
Δifα衰减
- 励磁绕组电阻导致能量耗散
- 时间常数 T d ’ T_d^{’} Td’:取决于转子回路的电阻和从转子侧看向定子侧的等值电感, T d ’ = L f ’ R f T_d^{’}=\frac{L_f^{’}}{R_f} Td’=RfLf’
- Δ i f α \Delta i_{f\alpha} Δifα衰减 ——> i i ω i_{i\omega} iiω同步衰减
- 定子侧直流分量
Δ
i
i
α
\Delta i_{i\alpha}
Δiiα衰减
4、短路电流基频交流分量的初始值及稳态有效值
-
短路电流稳态值 I ∞ I_∞ I∞
- 当短路达到稳态后,各自由分量衰减完毕,仅剩恒定的励磁电流 i ∣ f 0 ∣ i_{|f0|} i∣f0∣产生强制基频分量
- I ∞ = I d = E q x d I_∞=I_d=\frac{E_q}{x_d} I∞=Id=xdEq,其中: E q E_q Eq:空载电动势, x d x_d xd:直轴同步电抗
-
短路电流的初始值
-
忽略阻尼绕组时的初始值 I ’ I^{’} I’(暂态电流)
-
I ’ ˙ = I d ’ ˙ = E ˙ q ’ j x d ’ \dot{I^{’}}=\dot{I_d^{’}}=\frac{\dot{E}_{q}^{’}}{jx_d^{’}} I’˙=Id’˙=jxd’E˙q’
I ’ = I d ’ = E q ’ x d ’ I^{’}=I_d^{’}=\frac{E_{q}^{’}}{x_d^{’}} I’=Id’=xd’Eq’,其中: E q ′ E_{q}^{'} Eq′:暂态电动势, x d ’ x_d^{’} xd’:直轴暂态电抗
-
x d ’ < x d x_d^{’}<x_d xd’<xd ——> I ’ > I ∞ I^{’}>I_∞ I’>I∞
-
-
计及阻尼绕组时的初始值 I ” I^{”} I”(次暂态电流)
-
I ” ˙ = I d ” ˙ = E ˙ q ” j x d ” \dot{I^{”}}=\dot{I_d^{”}}=\frac{\dot{E}_{q}^{”}}{jx_d^{”}} I”˙=Id”˙=jxd”E˙q”
I " = I d " = E q " x d " I^{"}=I_d^{"}=\frac{E_{q}^{"}}{x_d^{"}} I"=Id"=xd"Eq",其中: E q ” E_q^{”} Eq”:次暂态电动势, x d ” x_d^{”} xd”:直轴次暂态电抗
-
$X_d’’ < X_d’ < X_d $ ——> I ′ ′ > I ′ > I ∞ I'' > I' > I_\infty I′′>I′>I∞
-
-
5、空载时短路电流的近似表达式
基频交流分量的近似表达式
-
短路电流交流分量幅值随时间的变化过程
I m ( t ) = 2 E q ∣ 0 ∣ [ ( 1 X d ′ ′ − 1 X d ′ ) e − t / T d ′ ′ + ( 1 X d ′ − 1 X d ) e − t / T d ′ + 1 X d ] I_m(t)=\sqrt{2}E_{q|0|}\left[\left( \frac{1}{X_d''} - \frac{1}{X_d'} \right) e^{-t/T_d''}+\left( \frac{1}{X_d'} - \frac{1}{X_d} \right) e^{-t/T_d'} + \frac{1}{X_d} \right] Im(t)=2Eq∣0∣[(Xd′′1−Xd′1)e−t/Td′′+(Xd′1−Xd1)e−t/Td′+Xd1]- 次暂态项: ( 1 X d ′ ′ − 1 X d ′ ) e − t / T d ′ ′ \left( \frac{1}{X_d''} - \frac{1}{X_d'} \right) e^{-t/T_d''} (Xd′′1−Xd′1)e−t/Td′′
- 暂态项: ( 1 X d ′ − 1 X d ) e − t / T d ′ \left( \frac{1}{X_d'} - \frac{1}{X_d} \right) e^{-t/T_d'} (Xd′1−Xd1)e−t/Td′
- 稳态项: 1 X d \frac{1}{X_d} Xd1
-
三相交流电流瞬时值
{ i a ω = I m ( t ) cos ( θ 0 + ω 0 t ) i b ω = I m ( t ) cos ( θ 0 + ω 0 t − 12 0 ∘ ) i c ω = I m ( t ) cos ( θ 0 + ω 0 t + 12 0 ∘ ) \begin{cases} i_{a\omega} = I_m(t) \cos(\theta_0 + \omega_0 t) \\ i_{b\omega} = I_m(t) \cos(\theta_0 + \omega_0 t - 120^\circ) \\ i_{c\omega} = I_m(t) \cos(\theta_0 + \omega_0 t + 120^\circ) \end{cases} ⎩ ⎨ ⎧iaω=Im(t)cos(θ0+ω0t)ibω=Im(t)cos(θ0+ω0t−120∘)icω=Im(t)cos(θ0+ω0t+120∘)
全电流的近似表达式
{ i a = 2 E q ∣ 0 ∣ [ ( 1 x d ′ − 1 x d ′ ) e − t / T d ′ + ( 1 x d ′ − 1 x d ) e − t / T d ′ + 1 x d ] cos ( θ 0 + ω 0 t ) − 2 E q ∣ 0 ∣ n x d cos θ 0 e − t / T a i b = 2 E q ∣ 0 ∣ [ ( 1 x d ′ − 1 x d ′ ) e − t / T d ′ + ( 1 x d ′ − 1 x d ) e − t / T d ′ + 1 x d ] cos ( θ 0 + ω 0 t − 12 0 ∘ ) − 2 E q ∣ 0 ∣ n x d cos ( θ 0 − 12 0 ∘ ) e − t / T a i c = 2 E q ∣ 0 ∣ [ ( 1 x d ′ − 1 x d ′ ) e − t / T d ′ + ( 1 x d ′ − 1 x d ) e − t / T d ′ + 1 x d ] cos ( θ 0 + ω 0 t + 12 0 ∘ ) − 2 E q ∣ 0 ∣ n x d cos ( θ 0 + 12 0 ∘ ) e − t / T a \begin{cases} i_a = \sqrt{2}E_{q|0|} \left[ \left( \frac{1}{x_d'} - \frac{1}{x_d'} \right) e^{-t/T_d'} + \left( \frac{1}{x_d'} - \frac{1}{x_d} \right) e^{-t/T_d'} + \frac{1}{x_d} \right] \cos(\theta_0 + \omega_0 t) - \frac{\sqrt{2}E_{q|0|}}{\frac{n}{x_d}} \cos\theta_0 e^{-t/T_a} \\ i_b = \sqrt{2}E_{q|0|} \left[ \left( \frac{1}{x_d'} - \frac{1}{x_d'} \right) e^{-t/T_d'} + \left( \frac{1}{x_d'} - \frac{1}{x_d} \right) e^{-t/T_d'} + \frac{1}{x_d} \right] \cos(\theta_0 + \omega_0 t - 120^\circ) - \frac{\sqrt{2}E_{q|0|}}{\frac{n}{x_d}} \cos(\theta_0 - 120^\circ) e^{-t/T_a} \\ i_c = \sqrt{2}E_{q|0|} \left[ \left( \frac{1}{x_d'} - \frac{1}{x_d'} \right) e^{-t/T_d'} + \left( \frac{1}{x_d'} - \frac{1}{x_d} \right) e^{-t/T_d'} + \frac{1}{x_d} \right] \cos(\theta_0 + \omega_0 t + 120^\circ) - \frac{\sqrt{2}E_{q|0|}}{\frac{n}{x_d}} \cos(\theta_0 + 120^\circ) e^{-t/T_a} \end{cases} ⎩ ⎨ ⎧ia=2Eq∣0∣[(xd′1−xd′1)e−t/Td′+(xd′1−xd1)e−t/Td′+xd1]cos(θ0+ω0t)−xdn2Eq∣0∣cosθ0e−t/Taib=2Eq∣0∣[(xd′1−xd′1)e−t/Td′+(xd′1−xd1)e−t/Td′+xd1]cos(θ0+ω0t−120∘)−xdn2Eq∣0∣cos(θ0−120∘)e−t/Taic=2Eq∣0∣[(xd′1−xd′1)e−t/Td′+(xd′1−xd1)e−t/Td′+xd1]cos(θ0+ω0t+120∘)−xdn2Eq∣0∣cos(θ0+120∘)e−t/Ta