【目标检测】基于yolov5的道路坑洼检测(附代码和数据集)

写在前面:
首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。
(专栏订阅用户订阅专栏后免费提供数据集和源码一份,超级VIP用户不在服务范围之内,不想订阅专栏的兄弟们可以私信我详聊)

路虽远,行则将至;事虽难,做则必成。只要有愚公移山的志气、滴水穿石的毅力,脚踏实地,埋头苦干,积跬步以至千里,就一定能够把宏伟目标变为美好现实。

文末获取代码和数据集,请先看检测效果:

在这里插入图片描述

一.介绍

道路基础设施是至关重要的公共资产,近年来我国道路修建速度高速增长,几乎实现了村村通公路,它有助于经济发展和增长,同时带来重要的社会效益。它连接社区和企业,提供教育、就业、社会和卫生服务。然而,由于位置、使用年限、交通量、天气、工程解决方案和用于建造路面的材料相关的因素,路面会随着时间的推移而磨损和劣化

要使用YOLOv8模型进行检测行人,你可以按照以下步骤操作: 1. 首先,确保你已经下载并准备好了YOLOv8模型的权重文件(.pt文件)模型配置文件(.yaml文件)。 2. 创建一个新的Python程序,比如在E:\yolov8Project\ultralytics目录下创建一个train.py。 3. 在train.py中引入ultralytics库,并加载YOLOv8模型。你可以选择从头开始构建新模型,或者加载预训练模型。例如,使用以下代码加载预训练模型: ```python from ultralytics import YOLO model = YOLO("yolov8n.pt") # 加载预训练模型 ``` 4. 在程序主函数中,使用model.train()方法进行训练。你需要提供数据配置文件的路径(data.yaml),训练次数(epochs),批次大小(batch),设备编号(device)等参数。例如, ```python if __name__ == '__main__': results = model.train(data="ultralytics/datasets/people.yaml", epochs=100, batch=32, device=0) ``` 这将使用指定的数据配置文件,在设定的训练次数内,以指定的批次大小在指定的设备上进行训练。 通过以上步骤,你就可以使用YOLOv8模型进行行人检测了。请确保你已经下载了正确的模型权重文件模型配置文件,并根据需要调整训练参数。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [基于YOLOv8的行人目标检测项目(超级详细)](https://blog.csdn.net/m0_73414212/article/details/130657765)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值