【目标检测】关于YOLO系列算法中Confidence置信度的计算和理解

本文详细介绍了YOLO目标检测算法中置信度的概念,这是一个介于0和1之间的数值,表示模型对检测目标的确信程度。置信度基于边界框内是否存在物体以及匹配程度(IoU)计算,是评估预测结果可靠性的重要指标。高置信度预测通常更可靠,低置信度结果可能需要检查或修正。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面:
首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。
(专栏订阅用户订阅专栏后免费提供数据集和源码一份,超级VIP用户不在服务范围之内)

路虽远,行则将至;事虽难,做则必成。只要有愚公移山的志气、滴水穿石的毅力,脚踏实地,埋头苦干,积跬步以至千里,就一定能够把宏伟目标变为美好现实。

1、引言

在CV计算机视觉领域,YOLO(You Only Look Once)是一个非常知名的目标检测算法,从YOLOv1、YOLOv2、YOLOv3,直到现在的YOLOv8、YOLOv9,以及YOLO其他变体。它能够在图像或者视频中迅速而准确地识别出物体类别和位置。在YOLO系列目标检测算法中,我们常常听到“置信度”这个词,英文为Confidence。那么,这个Confidence,即置信度究竟是什么,又是如何计算的呢?下面,让我们用一个通俗易懂的语言讲解一下。

2、置信度的定义

在YOLO系列目标检测算法中&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值