目标检测系列—YOLOv8 详解

目标检测系列—YOLOv8 详解

1. 引言

YOLOv8 是 Ultralytics 团队于 2023 年发布的目标检测算法,是 YOLO 系列的最新版本。YOLOv8 在 YOLOv7 的基础上做出了进一步的优化,提升了检测精度、推理速度,并引入了更多的轻量化设计,适应了多种硬件环境。

YOLOv8 主要特点:

  • 高效且精确的目标检测能力,相较于 YOLOv7 提高了检测精度。
  • 轻量化设计,支持嵌入式设备和实时检测。
  • 改进的训练方法和自适应推理策略,进一步提升了推理速度。
  • 灵活的模型架构,适配不同规模的目标检测任务。

本文将详细解析 YOLOv8 的 网络结构、关键改进点,并提供 PyTorch 代码示例。


2. YOLOv8 的关键改进

改进点描述
1. 改进的 CSPDarknet提升特征提取能力,减少计算量
2. 改进的卷积模块加速推理,保持高效的计算性能
3. 自适应推理策略动态调整推理过程中的计算资源
4. 轻量化网络设计支持边缘设备和移动端部署
5. 增强的损失函数改进了目标框回归和分类精度

YOLOv8 在 COCO 数据集上的 AP50 达到了 77.2%,比 YOLOv7 进一步提升。


3. YOLOv8 的网络结构

YOLOv8 采用了 改进版的 CSPDarknet 作为主干网络,并结合 改进的 PANet(Path Aggregation Network) 进行特征融合,显著提升了网络的表达能力。

3.1 改进的 CSPDarknet

  • 输入 640 × 640 × 3 640 \times 640 \times 3 640×640×3 的 RGB 图像。
  • 特征提取
    • 使用 改进版的 CSPDarknet 作为主干网络,进一步优化了特征提取效率。
    • 采用 轻量化卷积模块,提高了推理速度。

CSPDarknet 代码示例(PyTorch 实现):

import torch
import torch.nn as nn

class CSPDarknetBlock(nn.Module):
    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=1)
        self.bn = nn.BatchNorm2d(out_channels)
        self.silu = nn.SiLU()

    def forward(self, x):
        return self.silu(self.bn(self.conv1(x) + self.conv2(x)))

model = CSPDarknetBlock(3, 32)
print(model)

4. YOLOv8 的 PANet 结构

YOLOv8 采用 改进的 PANet 结构进行特征融合,从不同层次获取信息并进行融合,提升了目标检测的准确性。

PANet 代码示例(PyTorch 实现):

class PANet(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(256, 128, kernel_size=1)
        self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
        self.conv2 = nn.Conv2d(128, 64, kernel_size=3, padding=1)
    
    def forward(self, x):
        x = self.conv1(x)
        x = self.upsample(x)
        x = self.conv2(x)
        return x

model = PANet()
print(model)

5. YOLOv8 的损失函数

YOLOv8 采用 改进的目标框回归分类损失函数,优化了目标框的预测精度。

损失函数代码示例(PyTorch 实现):

import torch

def giou_loss(pred_boxes, target_boxes):
    iou = torch.sum(torch.min(pred_boxes, target_boxes)) / torch.sum(torch.max(pred_boxes, target_boxes))
    center_dist = torch.sum((pred_boxes[:, :2] - target_boxes[:, :2]) ** 2)
    loss = 1 - iou + center_dist
    return loss

6. YOLOv8 的训练和部署

YOLOv8 使用 PyTorch 进行训练,并支持导出到多种格式。

6.1 训练 YOLOv8

git clone https://github.com/ultralytics/yolov8.git
cd yolov8
pip install -r requirements.txt
python train.py --batch 16 --epochs 50 --data coco.yaml --weights yolov8.pt

6.2 导出 YOLOv8 到 ONNX

python export.py --weights yolov8.pt --include onnx

7. 结论

YOLOv8 是 YOLO 系列中的最新版本,继承了 YOLO 的高效性和实时性,并在精度、速度、轻量化设计等方面做出了显著优化。通过本文的介绍,大家应该能够对 YOLOv8 有更深入的了解,并能够快速上手进行目标检测任务。

下一篇博客将介绍 YOLOv9 的前沿技术,敬请期待!


如果觉得本文对你有帮助,欢迎点赞、收藏并关注! 🚀

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值