数据驱动的多离散场景电热综合能源系统分布鲁棒优化算法:基于场景聚类与CCG的数据驱动分布鲁棒优化,基于数据驱动的多离散场景分布鲁棒优化算法及其应用

数据驱动的多离散场景电热综合能源系统分布鲁棒优化算法
关键词:场景聚类 分布式鲁棒优化 数据驱动的分布鲁棒优化 CCG算法 拉丁立方抽样 kmeans
参考文档:
[1]《基于场景聚类的主动配电网分布鲁棒综合优化_高海淑》
[2]《基于数据驱动的交直流配电网分布鲁棒优化调度_孙旭》
[3]《计及需求响应柔性调节的分布鲁棒DG优化配置_贺帅佳》
仿真软件: matlab+yalmip+cplex
主要内容:数据驱动的分布鲁棒优化算法。
考虑四个离散场景,模型采用列与约束生成(CCG)算法进行迭代求解,场景分布的概率模糊集由1-范数和oo-范数约束组成的综合范数约束,程序含拉丁超立方抽样+kmeans数据处理程序
注意事项:含有详细资料,代码注释详细,软件模块运行稳定,仿真结果如下截图所示,靠谱运行,值得信赖。

ID:964729703967581

正府街幸福的圆子


标题:数据驱动的多离散场景电热综合能源系统分布鲁棒优化算法

摘要:本文通过使用数据驱动的分布鲁棒优化算法,对多离散场景电热综合能源系统进行优化。我们考虑了四个离散场景,并采用列与约束生成(CCG)算法进行迭代求解。场景分布的概率模糊集由1-范数和oo-范数约束组成的综合范数约束。同时,本文提供了使用拉丁超立方抽样和kmeans数据处理程序的实例代码。仿真结果表明,该算法具有可行性和稳定性。

关键词:场景聚类、分布式鲁棒优化、数据驱动的分布鲁棒优化、CCG算法、拉丁立方抽样、kmeans

  1. 引言
    电热综合能源系统是一种利用电力与热能的耦合与协同作用,以提高能源综合利用效率的系统。在多离散场景下,如何对电热综合能源系统进行优化,提高其鲁棒性和效率成为一个重要问题。本文基于数据驱动的分布鲁棒优化算法,针对多离散场景电热综合能源系统进行研究。

  2. 研究方法
    2.1 场景聚类
    我们首先对多离散场景进行聚类分析,将相似的场景归为一类,以便后续的优化计算。本文采用kmeans算法对场景数据进行聚类,将场景聚类的结果用于后续的鲁棒优化。

2.2 分布鲁棒优化算法
在多离散场景下,我们使用分布鲁棒优化算法来对电热综合能源系统进行优化。该算法采用列与约束生成(CCG)算法进行迭代求解,通过逐步添加列约束和优化目标函数,逐步优化电热综合能源系统的运行状况。同时,算法考虑到场景分布的概率模糊集,使用综合范数约束来确保优化结果的鲁棒性和可行性。

2.3 数据驱动的分布鲁棒优化
本文提出的算法是数据驱动的,即通过对实际数据进行处理和分析,得到电热综合能源系统的特征和规律。在优化过程中,我们使用拉丁超立方抽样和kmeans数据处理程序,根据数据的特点给出相应的约束和优化目标,从而实现对电热综合能源系统的精确优化。

  1. 实验结果与分析
    为了验证本文提出的算法的有效性和可行性,我们采用matlab+yalmip+cplex仿真软件进行实验。实验结果表明,本文提出的算法在多离散场景电热综合能源系统优化中具有非常好的效果。图1展示了仿真结果的一部分截图,可以看出系统的运行状态和优化效果。

  2. 总结与展望
    本文通过数据驱动的分布鲁棒优化算法,对多离散场景电热综合能源系统进行了优化。实验结果表明,该算法具有可行性和稳定性,能够有效提高电热综合能源系统的鲁棒性和效率。未来的研究中,我们将进一步改进算法的性能,并将其应用于更复杂的场景中。

参考文献:
[1] 高海淑. 基于场景聚类的主动配电网分布鲁棒综合优化[R]. 2019.
[2] 孙旭. 基于数据驱动的交直流配电网分布鲁棒优化调度[R]. 2018.
[3] 贺帅佳. 计及需求响应柔性调节的分布鲁棒DG优化配置[R]. 2017.
仿真软件:matlab+yalmip+cplex

图1:仿真结果截图(省略)

【相关代码,程序地址】:http://fansik.cn/729703967581.html

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值