Matlab|【分布鲁棒】数据驱动的多离散场景电热综合能源系统分布鲁棒优化算法

本文复现了高海淑的主动配电网优化方法,针对综合能源电热微网,通过拉丁超立方抽样和K-means聚类处理不同场景,采用分布鲁棒优化方法解决,涉及非线性约束线性化和C&CG算法的主子问题迭代求解,展示了详细的算法步骤和部分计算结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

 主要内容   

1.1 主要难点-分布鲁棒优化

1.2 程序求解步骤-主子问题迭代

   部分结果   

下载链接


 主要内容   

本程序主要对《基于场景聚类的主动配电网分布鲁棒综合优化》-高海淑的方法复现,应用到综合能源电热微网方向,采用拉丁超立方抽样对不同场景进行处理,然后采用K-means聚类算法对场景聚类分析,应用该聚类分析数据采用分布鲁棒优化,场景分布的概率置信区间由1-范数和∞-范数约束,分两阶段对电热综合能源模型进行优化求解,得到不同场景下的优化结果。

下面对模型主要功能点进行分析。

1.1 主要难点-分布鲁棒优化

该模型分布鲁棒模型目标的紧凑形式如下:

不同场景的概率分布满足如下集合(这里是经过推导得出来的,具体详见原文,这篇文章该部分分析还算分布鲁棒中比较清楚的,很多文献直接就不明不白得出结论,看的一头雾水):

但是该集合非线性,需要进行线性化处理,得到如下的线性化集合:

该部分对应的代码如下:

%不确定约束
constraints=[constraints,sum(psp+psd)<=theta1];
constraints=[constraints,psp+psd<=thetaw];
constraints=[constraints,sigmap+sigmad<=1];
constraints=[constraints,0<=psp<=sigmap*theta1];
constraints=[constraints,0<=psd<=sigmad*theta1];
constraints=[constraints,ps==ps0'+psd+psp];

1.2 程序求解步骤-主子问题迭代

将模型分解为主问题与子问题,采用C&CG 算法分阶段迭代求解,具体迭代求解示意图如下:

主程序MAIN代码列示主子问题两部分循环迭代,具体代码如下:

ps0=[22.7; 15.6; 38.05; 23.65]'./100;%场景概率
ps=ps0;
alfa1=0.99;alfaw=0.99;N=5000;
theta1=4/N/2*log(2*4/(1-alfa1));%公式46-47
thetaw=1/N/2*log(2*4/(1-alfaw));
tn=24;%时序性参数
Pgmax=300;ru=50;rd=50;%微燃机最大出力,爬坡约束 原pgmax=100
Sch=400;Pchmax=0.2*Sch;ee0=0.5*Sch;socmax=0.9;socmin=0.1;
eta=0.95;%储能充放电效率
cg=1.7;%MTG运行成本
cq=0.62;%弃风弃光成本
ccn=0.3*7/100;%储能老化成本 原/1000
cqt=0.25;%启停成本
d2h=1.2;%电热比
yitagl=0.9;%电锅炉
UB=inf;
LB=-inf;
for k=1:4
% while UB-LB>1
    MP427;%主问题求解
    LB=obj_mp;%得到LB
    LB1(k)=LB;
    SP427;%子问题求解
    UB=min([UB,UB1]);%更新UB
    UB2(k)=UB;
end

   部分结果   

下载链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值