matlab实现lstm对电池soh的预测(含B0005,B0006数据集)

使用长短时记忆神经网络LSTM来实现锂电池SOH估计的算法学习案例(基于matlab编写)
1.选用NASA艾姆斯研究中心的电池数据集,B0005和B0006电池型号来完成,并提供该数据集的处理代码,该代码可将原始数据集重新制表,处理完的数据非常好用。
2.提取电池的恒流充电时间,等压升充电时间,极化内阻等变量作为健康特征。
3.使用LSTM来建立电池的SOH估计模型,以特征为输入,以SOH为输出。
4.对实际和预测数据进行对比
5.画出训练集,测试集误差曲线图 得出均方根误差RMSE
下载代码
https://download.csdn.net/download/BaiLuQingFeng/89372929?spm=1001.2014.3001.5503
、B005电池数据样本
训练进度图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 使用MATLAB实现NASA电池特征提取 #### 数据准备 在开始特征提取之前,需先准备好所需的电池数据。解压下载的数据文件夹,并将`B0005`, `B0006`, `B0007`, 和 `B0018` 文件放置于工作目录下[^2]。 #### 加载数据 使用MATLAB加载这些.mat格式的文件,可以通过读取循环次数、电压、电流等参数来进行初步处理: ```matlab % 设置路径到包电池数据的文件夹 dataPath = 'path_to_your_data_folder'; % 替换为实际路径 files = dir(fullfile(dataPath, '*.mat')); for k = 1:length(files) load(fullfile(dataPath, files(k).name)); end ``` #### 特征定义与计算 针对每组充电/放电周期中的时间序列信号(如电压V(t),电流I(t)),可从中抽取多个有意义的时间域或频率域能反映电池性能变化趋势的关键指标作为特征向量的一部分。例如最大最小值差、均方根(RMS)、峰峰值(Peak-to-Peak)以及频谱特性等等。 对于单次充放电工况下的原始测量值,可以采用以下方式获取一些基本统计学描述性的特征: ```matlab function features = extractBasicFeatures(signal) meanVal = mean(signal); stdDev = std(signal); maxVal = max(signal); minVal = min(signal); rmsValue = sqrt(mean(signal.^2)); % 均方根 peakToPeak = maxVal - minVal; skewnessVal = skewness(signal); % 偏度 kurtosisVal = kurtosis(signal); % 峰度 features = [meanVal; stdDev; maxVal; minVal; rmsValue; ... peakToPeak; skewnessVal; kurtosisVal]; end ``` 此函数接收一个表示某物理量随时间变化的一维数组作为输入,并返回一组由八个数值构成的新矩阵,代表该变量的不同方面属性。 #### 应用实例 假设已经获得了某个特定工况期间内所有时刻对应的端口开路电压OCV,则可以直接调用上述自定义好的辅助工具来完成具体操作: ```matlab ocvData = ... ; % 获取开放电路电压数据 basicOcvFeatures = extractBasicFeatures(ocvData); disp('Open Circuit Voltage Features:'); disp(basicOcvFeatures'); ``` 以上过程展示了怎样利用简单的数学运算从实验记录里挖掘出潜在有用的信息片段用于后续建模分析或其他目的。当然,在实际情况当中可能还需要考虑更多复杂的因素,比如温度影响、老化效应等,这取决于研究的具体需求和目标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值