引言
双系统视觉-语言-动作(VLA)框架是一种新兴的机器人操控方法,旨在通过分离高层次推理和低层次控制来处理复杂任务。这种框架受到认知科学双过程理论的启发,其中大型系统(System 2)负责复杂的规划和决策,而小型系统(System 1)专注于实时运动控制和感官处理。强化学习(RL)作为一种通过试错学习以最大化奖励函数的机器学习范式,在机器人领域已被广泛用于学习控制策略,尤其是在任务难以明确编程的情况下。本文分析RL如何提升双系统VLA的性能,基于2025年3月26日提供的五份PDF附件内容,涵盖了多个相关研究。
双系统VLA的定义与背景
双系统VLA的概念在近期机器人研究中逐渐受到关注,例如一个双过程VLA:利用VLM实现高效机器人操控中提出的DP-VLA框架。该框架使用大型System 2模型进行复杂推理和决策,而小型System 1模型则处理实时运动控制和感官处理,旨在提高计算效率和实时性能。附件中的“GROOT N1:通用人形机器人开放基础模型”白皮书也描述了类似的双系统架构,System 2为视觉-语言模块,System 1为扩散变换器模块,用于生成实时动作。
RL在机器人领域的应用
RL是一种代理通过与环境交互,基于奖励函数学习最优策略的范式。在机器人领域,RL已被用于学习从简单操控到复杂导航的各种任务。例如,附件“Plan-Seq-Learn:语言模型指导的RL解决长时程机器人任务”展示了RL如何用于学习低层次控制策略,特别适用于接触丰富的长时程任务。RL的优点在于其从经验中学习的能力,使其适合那些难以通过传统编程解决的任务。
RL在双系统VLA中的具体角色
1. 训练低层次控制策略
RL在双系统VLA中主要用于训练System 1,以学习精确的实时运动控制策略。通过定义适当的奖励函数,RL可以优化机器人的动作以实现期望结果。例如,在“Plan-Seq-Learn”研究中,RL用于学习短时间范围内的接触丰富交互策略,从局部观察中提升机器人处理复杂任务的能力。该研究在Meta-World、Obstructed Suite、Kitchen和Robosuite等四个基准上测试了超过25个任务,成功率超过85%,特别是在接触丰富任务如NutAssembly中达到96%的成功率。这表明RL不仅提高了任务成功率,还能显著缩短学习时间,尤其是在动态和接触性任务中。
2. 优化高层次规划的潜力
虽然当前双系统VLA的高层次规划通常依赖预训练的语言模型(如LLM),但RL有可能用于基于任务结果对这些模型进行微调。例如,如果某个计划导致任务失败,RL可以调整规划模块以在类似情况下生成更好的计划。这需要定义评估计划有效性的奖励函数,并将规划过程视为更高层次RL框架中的一个动作。尽管附件中未直接展示这种应用,但它是未来研究的一个有前景的方向。例如,“Hi Robot:基于层次视觉-语言-动作模型的开放式指令跟随”提到高层次政策生成中间语言命令,但未明确使用RL训练,更多依赖模仿学习。
3. 端到端训练
端到端训练整个双系统VLA使用RL可以优化规划和执行组件之间的交互,确保两者协同工作。例如,“GROOT N1”白皮书描述了使用流匹配损失端到端训练双系统架构,虽然流匹配更像是生成建模而非传统RL,但它可以视为一种优化整个系统的策略学习方法。该模型在模拟基准(如RoboCasa、DexMimicGen)和现实世界测试中表现优于模仿学习基线,尤其在低数据场景下,显示出高数据效率和泛化能力。
4. 人机交互RL
通过整合人类反馈,RL可以进一步提升双系统VLA的性能。例如,“精确和灵巧的机器人操控:基于人机交互的强化学习”展示了HIL-SERL系统如何利用人类操作者的实时纠正来指导RL政策学习。该系统在七个任务中实现了近乎完美的成功率(100%)和超人类循环时间(平均快1.8倍),在1至2.5小时的训练内完成,特别是在动态操控(如翻转物体)和精密组装(如主板组件)任务中表现突出。这表明人机交互RL结合了人类直觉和RL的学习能力,显著提升了任务的鲁棒性和效率。
以下是针对 Plan-Seq-Learn 和 HIL-SERL 中强化学习(RL)方法的数学表达式推导和代码示例的补充解释。这些内容旨在帮助理解两种方法中RL的具体实现及其背后的原理。
Plan-Seq-Learn 中的 RL 方法
方法概述
在 Plan-Seq-Learn 中,强化学习(RL)用于训练低层次控制策略,其核心思想是利用语言模型(LLM)生成的计划来指导RL代理学习执行任务的动作序列。语言模型提供高层次的任务分解(如“打开门,拿起杯子”),而RL则负责学习每个子任务的具体动作。
数学推导
RL的基本框架基于马尔可夫决策过程(MDP),由以下元素定义:
- 状态空间 S \mathcal{S} S:描述环境的可能状态。
- 动作空间 A \mathcal{A} A:代理可执行的动作集合。
- 转移概率 p ( s ′ ∣ s , a ) p(s'|s,a) p(s′∣s,a):从状态 s s s 执行动作 a a a 后转移到状态 s ′ s' s′ 的概率。
- 奖励函数 r ( s , a ) r(s,a) r(s,a):执行动作后的即时奖励。
- 折扣因子 γ ∈ [ 0 , 1 ) \gamma \in [0,1) γ∈[0,1):衡量未来奖励的重要性。
代理的目标是学习一个策略
π
(
a
∣
s
)
\pi(a|s)
π(a∣s),以最大化期望累积折扣奖励:
J
(
π
)
=
E
[
∑
t
=
0
∞
γ
t
r
(
s
t
,
a
t
)
∣
s
0
,
π
]
J(\pi) = \mathbb{E} \left[ \sum_{t=0}^\infty \gamma^t r(s_t, a_t) \mid s_0, \pi \right]
J(π)=E[t=0∑∞γtr(st,at)∣s0,π]
在 Plan-Seq-Learn 中,语言模型生成的计划
z
=
[
z
1
,
z
2
,
…
,
z
K
]
z = [z_1, z_2, \dots, z_K]
z=[z1,z2,…,zK](例如
z
1
=
z_1 =
z1= “打开门”,
z
2
=
z_2 =
z2=“拿起杯子”)被分解为一系列子任务。每个子任务 ( z_k ) 对应一个低层次策略
π
k
(
a
∣
s
)
\pi_k(a|s)
πk(a∣s)。代理根据当前状态
s
s
s 和当前子任务
z
k
z_k
zk 选择动作:
a
∼
π
k
(
⋅
∣
s
)
a \sim \pi_k(\cdot|s)
a∼πk(⋅∣s)
层次RL结构
这种方法类似于层次强化学习(Hierarchical RL, HRL):
- 高层次策略:由语言模型生成计划 z z z。
- 低层次策略:由RL学习每个子任务的执行方式。
奖励设计
为了让代理执行计划,奖励函数需要针对子任务设计。例如:
- 局部奖励:完成子任务 z k z_k zk 时给予奖励 r k ( s , a ) r_k(s,a) rk(s,a)。
- 全局奖励:完成整个计划时给予额外奖励。
对于子任务
z
k
z_k
zk,可以定义一个局部MDP,其奖励函数
r
k
(
s
,
a
)
r_k(s,a)
rk(s,a) 和终止条件根据
z
k
z_k
zk 定制。代理通过优化局部目标学习
π
k
\pi_k
πk:
J
k
(
π
k
)
=
E
[
∑
t
=
0
T
k
γ
t
r
k
(
s
t
,
a
t
)
∣
s
0
,
π
k
]
J_k(\pi_k) = \mathbb{E} \left[ \sum_{t=0}^{T_k} \gamma^t r_k(s_t, a_t) \mid s_0, \pi_k \right]
Jk(πk)=E[t=0∑Tkγtrk(st,at)∣s0,πk]
其中
T
k
T_k
Tk 是子任务的终止时间。
策略优化
低层次策略
π
k
\pi_k
πk 可以使用Q-learning或策略梯度方法优化。例如,在策略梯度中,目标是最大化
J
k
(
π
k
)
J_k(\pi_k)
Jk(πk),梯度更新为:
∇
J
k
(
π
k
)
≈
∑
t
∇
θ
log
π
k
(
a
t
∣
s
t
;
θ
)
⋅
A
k
(
s
t
,
a
t
)
\nabla J_k(\pi_k) \approx \sum_t \nabla_\theta \log \pi_k(a_t|s_t; \theta) \cdot A_k(s_t, a_t)
∇Jk(πk)≈t∑∇θlogπk(at∣st;θ)⋅Ak(st,at)
其中
A
k
(
s
t
,
a
t
)
A_k(s_t, a_t)
Ak(st,at) 是优势函数,表示动作
a
t
a_t
at 的相对优越性。
代码示例
以下是一个简化的Python代码示例,使用PyTorch在CartPole环境中实现Plan-Seq-Learn的RL方法:
import gym
import torch
import torch.nn as nn
import torch.optim as optim
# 定义策略网络
class PolicyNetwork(nn.Module):
def __init__(self, state_dim, action_dim):
super(PolicyNetwork, self).__init__()
self.fc1 = nn.Linear(state_dim, 128)
self.fc2 = nn.Linear(128, action_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.softmax(self.fc2(x), dim=-1)
return x
# 初始化环境和网络
env = gym.make('CartPole-v1')
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
policy_net = PolicyNetwork(state_dim, action_dim)
optimizer = optim.Adam(policy_net.parameters(), lr=0.001)
# 语言模型生成的计划
plan = ['balance_pole', 'move_cart']
# 子任务奖励函数
def reward_function(state, action, subtask):
if subtask == 'balance_pole':
return 1 if abs(state[2]) < 0.1 else 0 # 杆角度小则奖励
elif subtask == 'move_cart':
return 1 if abs(state[0]) < 0.5 else 0 # 车位置靠近中心则奖励
# 训练循环
for episode in range(1000):
state = env.reset()
done = False
total_reward = 0
current_subtask = plan[0] # 初始子任务
while not done:
state_tensor = torch.FloatTensor(state).unsqueeze(0)
action_probs = policy_net(state_tensor)
action = torch.multinomial(action_probs, 1).item()
next_state, _, done, _ = env.step(action)
# 计算奖励
reward = reward_function(state, action, current_subtask)
total_reward += reward
# 策略梯度更新(简化版)
loss = -torch.log(action_probs[0, action]) * reward
optimizer.zero_grad()
loss.backward()
optimizer.step()
state = next_state
print(f'Episode {episode}, Total Reward: {total_reward}')
说明:
- 代码中假设了一个简单的计划(
balance_pole
和move_cart
),实际中计划可能更复杂,需要动态切换子任务。 - 奖励函数根据子任务定义,实际应用中可能需要更精细的设计。
HIL-SERL 中的 RL 方法
方法概述
HIL-SERL(Human-in-the-Loop Skill Extraction and Reinforcement Learning)通过人机交互整合人类反馈,利用人类操作者的实时纠正来指导RL策略学习。人类提供示范或偏好,RL代理从中学习优化策略。
数学推导
HIL-SERL结合了模仿学习和强化学习。假设人类提供了一组示范轨迹:
D
=
{
τ
1
,
τ
2
,
…
,
τ
N
}
\mathcal{D} = \{\tau_1, \tau_2, \dots, \tau_N\}
D={τ1,τ2,…,τN}
其中每个轨迹
τ
=
[
(
s
0
,
a
0
)
,
(
s
1
,
a
1
)
,
…
,
(
s
T
,
a
T
)
]
\tau = [(s_0, a_0), (s_1, a_1), \dots, (s_T, a_T)]
τ=[(s0,a0),(s1,a1),…,(sT,aT)]。
模仿学习
首先,代理可以通过行为克隆(Behavioral Cloning)学习初始策略。目标是最小化示范数据上的负对数似然:
L
(
θ
)
=
−
∑
τ
∈
D
∑
(
s
,
a
)
∈
τ
log
π
θ
(
a
∣
s
)
L(\theta) = -\sum_{\tau \in \mathcal{D}} \sum_{(s,a) \in \tau} \log \pi_\theta(a|s)
L(θ)=−τ∈D∑(s,a)∈τ∑logπθ(a∣s)
其中
π
θ
(
a
∣
s
)
\pi_\theta(a|s)
πθ(a∣s) 是参数化的策略。
结合RL
在模仿学习的基础上,代理通过与环境交互,使用RL微调策略。奖励函数可以是任务特定的,也可以从人类反馈中学习(例如通过逆强化学习)。逆强化学习的目标是找到一个奖励函数 ( r(s,a) ),使得示范轨迹的累积奖励高于其他轨迹:
∑
(
s
,
a
)
∈
τ
r
(
s
,
a
)
>
∑
(
s
,
a
)
∈
τ
′
r
(
s
,
a
)
,
∀
τ
∈
D
,
τ
′
∉
D
\sum_{(s,a) \in \tau} r(s,a) > \sum_{(s,a) \in \tau'} r(s,a), \quad \forall \tau \in \mathcal{D}, \tau' \notin \mathcal{D}
(s,a)∈τ∑r(s,a)>(s,a)∈τ′∑r(s,a),∀τ∈D,τ′∈/D
策略优化
RL阶段使用策略梯度方法优化策略,梯度更新为:
∇
J
(
π
)
≈
∑
t
∇
θ
log
π
(
a
t
∣
s
t
;
θ
)
⋅
A
(
s
t
,
a
t
)
\nabla J(\pi) \approx \sum_t \nabla_\theta \log \pi(a_t|s_t; \theta) \cdot A(s_t, a_t)
∇J(π)≈t∑∇θlogπ(at∣st;θ)⋅A(st,at)
其中
A
(
s
t
,
a
t
)
A(s_t, a_t)
A(st,at) 可以基于任务奖励或人类反馈估计。
代码示例
以下是一个简化的Python代码示例,展示HIL-SERL中模仿学习和RL的结合:
import gym
import torch
import torch.nn as nn
import torch.optim as optim
# 定义策略网络
class PolicyNetwork(nn.Module):
def __init__(self, state_dim, action_dim):
super(PolicyNetwork, self).__init__()
self.fc1 = nn.Linear(state_dim, 128)
self.fc2 = nn.Linear(128, action_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.softmax(self.fc2(x), dim=-1)
return x
# 初始化环境和网络
env = gym.make('CartPole-v1')
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
policy_net = PolicyNetwork(state_dim, action_dim)
optimizer = optim.Adam(policy_net.parameters(), lr=0.001)
# 假设的人类示范数据(state, action 对)
demonstrations = [(env.reset(), 0), (env.reset(), 1)] # 简化示例
# 行为克隆预训练
for state, action in demonstrations:
state_tensor = torch.FloatTensor(state).unsqueeze(0)
action_tensor = torch.LongTensor([action])
action_probs = policy_net(state_tensor)
loss = -torch.log(action_probs[0, action_tensor])
optimizer.zero_grad()
loss.backward()
optimizer.step()
# RL微调
for episode in range(1000):
state = env.reset()
done = False
total_reward = 0
while not done:
state_tensor = torch.FloatTensor(state).unsqueeze(0)
action_probs = policy_net(state_tensor)
action = torch.multinomial(action_probs, 1).item()
next_state, reward, done, _ = env.step(action)
# 策略梯度更新
loss = -torch.log(action_probs[0, action]) * reward
optimizer.zero_grad()
loss.backward()
optimizer.step()
state = next_state
total_reward += reward
print(f'Episode {episode}, Total Reward: {total_reward}')
说明:
- 代码首先通过行为克隆预训练策略,然后使用RL微调。
- 实际HIL-SERL中,人类反馈可能实时提供(如通过遥控器纠正动作),需要更复杂的实时交互机制。
RL方法小结
- Plan-Seq-Learn:通过语言模型指导RL学习低层次策略,利用层次RL结构和子任务奖励设计实现任务分解与执行。
- HIL-SERL:结合人类反馈,通过模仿学习初始化策略,再用RL优化,适用于需要人类指导的复杂任务。
这些数学推导和代码示例展示了两种方法的核心实现细节,有助于更深入理解其在机器人控制中的应用。
效率与实时性能
双系统VLA的一个关键挑战是实现高效和实时性能,尤其是在计算密集型模型下。通过使用RL训练低层次控制系统,可以确保其高效快速运行,因为RL可以学习针对特定任务优化的策略。此外,人机交互RL可以提供实时纠正和指导,进一步增强系统在实时任务中的表现。例如,“Plan-Seq-Learn”通过RL学习低层次策略,展示了在长时程任务中的快速适应能力,而HIL-SERL则通过人类反馈实现了高频控制和精确操控。
益处与挑战
益处
- 适应性和泛化性提升:RL使机器人能够适应新任务和环境,特别是在动态和接触丰富场景下。
- 精确性和效率提升:通过优化控制策略,RL提高了任务执行的精确性和效率,例如HIL-SERL在复杂任务中的表现。
- 从经验和反馈中学习:RL能够从机器人自身的试错和人类反馈中学习,增强系统能力。
挑战
- 高样本复杂性:RL需要大量计算资源和时间,特别是在现实世界中收集数据成本高。
- 安全性和稳定性:在学习过程中确保安全和稳定性是一个重大挑战,尤其是在物理机器人操作中。
- 奖励函数设计:设计适当的奖励函数并处理复杂任务中的稀疏奖励是一个技术难题。
结论
强化学习在提升双系统VLA性能方面发挥了关键作用,通过训练低层次控制策略、潜在优化高层次规划、端到端训练和人机交互RL等多种方式,RL使机器人系统更加适应和高效。随着研究的深入,RL技术与VLA模型的进一步整合有望带来更复杂和高效的机器人操控系统。
表格:RL在双系统VLA中的应用示例
研究名称 | RL应用领域 | 主要成果 | 相关附件ID |
---|---|---|---|
Plan-Seq-Learn | 低层次控制策略学习 | 接触丰富任务成功率达96%,样本效率高 | 0 |
HIL-SERL | 人机交互RL,精确操控 | 成功率100%,比人类快1.8倍,训练时间1-2.5小时 | 2 |
GROOT N1 | 端到端训练(流匹配) | 模拟和现实世界测试优于基线,低数据场景高效 | 4 |