强化学习与双系统具身大模型的共舞

引言

双系统视觉-语言-动作(VLA)框架是一种新兴的机器人操控方法,旨在通过分离高层次推理和低层次控制来处理复杂任务。这种框架受到认知科学双过程理论的启发,其中大型系统(System 2)负责复杂的规划和决策,而小型系统(System 1)专注于实时运动控制和感官处理。强化学习(RL)作为一种通过试错学习以最大化奖励函数的机器学习范式,在机器人领域已被广泛用于学习控制策略,尤其是在任务难以明确编程的情况下。本文分析RL如何提升双系统VLA的性能,基于2025年3月26日提供的五份PDF附件内容,涵盖了多个相关研究。

双系统VLA的定义与背景

双系统VLA的概念在近期机器人研究中逐渐受到关注,例如一个双过程VLA:利用VLM实现高效机器人操控中提出的DP-VLA框架。该框架使用大型System 2模型进行复杂推理和决策,而小型System 1模型则处理实时运动控制和感官处理,旨在提高计算效率和实时性能。附件中的“GROOT N1:通用人形机器人开放基础模型”白皮书也描述了类似的双系统架构,System 2为视觉-语言模块,System 1为扩散变换器模块,用于生成实时动作。

RL在机器人领域的应用

RL是一种代理通过与环境交互,基于奖励函数学习最优策略的范式。在机器人领域,RL已被用于学习从简单操控到复杂导航的各种任务。例如,附件“Plan-Seq-Learn:语言模型指导的RL解决长时程机器人任务”展示了RL如何用于学习低层次控制策略,特别适用于接触丰富的长时程任务。RL的优点在于其从经验中学习的能力,使其适合那些难以通过传统编程解决的任务。

RL在双系统VLA中的具体角色
1. 训练低层次控制策略

RL在双系统VLA中主要用于训练System 1,以学习精确的实时运动控制策略。通过定义适当的奖励函数,RL可以优化机器人的动作以实现期望结果。例如,在“Plan-Seq-Learn”研究中,RL用于学习短时间范围内的接触丰富交互策略,从局部观察中提升机器人处理复杂任务的能力。该研究在Meta-World、Obstructed Suite、Kitchen和Robosuite等四个基准上测试了超过25个任务,成功率超过85%,特别是在接触丰富任务如NutAssembly中达到96%的成功率。这表明RL不仅提高了任务成功率,还能显著缩短学习时间,尤其是在动态和接触性任务中。

2. 优化高层次规划的潜力

虽然当前双系统VLA的高层次规划通常依赖预训练的语言模型(如LLM),但RL有可能用于基于任务结果对这些模型进行微调。例如,如果某个计划导致任务失败,RL可以调整规划模块以在类似情况下生成更好的计划。这需要定义评估计划有效性的奖励函数,并将规划过程视为更高层次RL框架中的一个动作。尽管附件中未直接展示这种应用,但它是未来研究的一个有前景的方向。例如,“Hi Robot:基于层次视觉-语言-动作模型的开放式指令跟随”提到高层次政策生成中间语言命令,但未明确使用RL训练,更多依赖模仿学习。

3. 端到端训练

端到端训练整个双系统VLA使用RL可以优化规划和执行组件之间的交互,确保两者协同工作。例如,“GROOT N1”白皮书描述了使用流匹配损失端到端训练双系统架构,虽然流匹配更像是生成建模而非传统RL,但它可以视为一种优化整个系统的策略学习方法。该模型在模拟基准(如RoboCasa、DexMimicGen)和现实世界测试中表现优于模仿学习基线,尤其在低数据场景下,显示出高数据效率和泛化能力。

4. 人机交互RL

通过整合人类反馈,RL可以进一步提升双系统VLA的性能。例如,“精确和灵巧的机器人操控:基于人机交互的强化学习”展示了HIL-SERL系统如何利用人类操作者的实时纠正来指导RL政策学习。该系统在七个任务中实现了近乎完美的成功率(100%)和超人类循环时间(平均快1.8倍),在1至2.5小时的训练内完成,特别是在动态操控(如翻转物体)和精密组装(如主板组件)任务中表现突出。这表明人机交互RL结合了人类直觉和RL的学习能力,显著提升了任务的鲁棒性和效率。

以下是针对 Plan-Seq-LearnHIL-SERL 中强化学习(RL)方法的数学表达式推导和代码示例的补充解释。这些内容旨在帮助理解两种方法中RL的具体实现及其背后的原理。


Plan-Seq-Learn 中的 RL 方法

方法概述

Plan-Seq-Learn 中,强化学习(RL)用于训练低层次控制策略,其核心思想是利用语言模型(LLM)生成的计划来指导RL代理学习执行任务的动作序列。语言模型提供高层次的任务分解(如“打开门,拿起杯子”),而RL则负责学习每个子任务的具体动作。

数学推导

RL的基本框架基于马尔可夫决策过程(MDP),由以下元素定义:

  • 状态空间 S \mathcal{S} S:描述环境的可能状态。
  • 动作空间 A \mathcal{A} A:代理可执行的动作集合。
  • 转移概率 p ( s ′ ∣ s , a ) p(s'|s,a) p(ss,a):从状态 s s s 执行动作 a a a 后转移到状态 s ′ s' s 的概率。
  • 奖励函数 r ( s , a ) r(s,a) r(s,a):执行动作后的即时奖励。
  • 折扣因子 γ ∈ [ 0 , 1 ) \gamma \in [0,1) γ[0,1):衡量未来奖励的重要性。

代理的目标是学习一个策略 π ( a ∣ s ) \pi(a|s) π(as),以最大化期望累积折扣奖励:
J ( π ) = E [ ∑ t = 0 ∞ γ t r ( s t , a t ) ∣ s 0 , π ] J(\pi) = \mathbb{E} \left[ \sum_{t=0}^\infty \gamma^t r(s_t, a_t) \mid s_0, \pi \right] J(π)=E[t=0γtr(st,at)s0,π]

Plan-Seq-Learn 中,语言模型生成的计划 z = [ z 1 , z 2 , … , z K ] z = [z_1, z_2, \dots, z_K] z=[z1,z2,,zK](例如 z 1 = z_1 = z1= “打开门”, z 2 = z_2 = z2=“拿起杯子”)被分解为一系列子任务。每个子任务 ( z_k ) 对应一个低层次策略 π k ( a ∣ s ) \pi_k(a|s) πk(as)。代理根据当前状态 s s s 和当前子任务 z k z_k zk 选择动作:
a ∼ π k ( ⋅ ∣ s ) a \sim \pi_k(\cdot|s) aπk(s)

层次RL结构

这种方法类似于层次强化学习(Hierarchical RL, HRL):

  • 高层次策略:由语言模型生成计划 z z z
  • 低层次策略:由RL学习每个子任务的执行方式。
奖励设计

为了让代理执行计划,奖励函数需要针对子任务设计。例如:

  • 局部奖励:完成子任务 z k z_k zk 时给予奖励 r k ( s , a ) r_k(s,a) rk(s,a)
  • 全局奖励:完成整个计划时给予额外奖励。

对于子任务 z k z_k zk,可以定义一个局部MDP,其奖励函数 r k ( s , a ) r_k(s,a) rk(s,a) 和终止条件根据 z k z_k zk 定制。代理通过优化局部目标学习 π k \pi_k πk
J k ( π k ) = E [ ∑ t = 0 T k γ t r k ( s t , a t ) ∣ s 0 , π k ] J_k(\pi_k) = \mathbb{E} \left[ \sum_{t=0}^{T_k} \gamma^t r_k(s_t, a_t) \mid s_0, \pi_k \right] Jk(πk)=E[t=0Tkγtrk(st,at)s0,πk]
其中 T k T_k Tk 是子任务的终止时间。

策略优化

低层次策略 π k \pi_k πk 可以使用Q-learning或策略梯度方法优化。例如,在策略梯度中,目标是最大化 J k ( π k ) J_k(\pi_k) Jk(πk),梯度更新为:
∇ J k ( π k ) ≈ ∑ t ∇ θ log ⁡ π k ( a t ∣ s t ; θ ) ⋅ A k ( s t , a t ) \nabla J_k(\pi_k) \approx \sum_t \nabla_\theta \log \pi_k(a_t|s_t; \theta) \cdot A_k(s_t, a_t) Jk(πk)tθlogπk(atst;θ)Ak(st,at)
其中 A k ( s t , a t ) A_k(s_t, a_t) Ak(st,at) 是优势函数,表示动作 a t a_t at 的相对优越性。

代码示例

以下是一个简化的Python代码示例,使用PyTorch在CartPole环境中实现Plan-Seq-Learn的RL方法:

import gym
import torch
import torch.nn as nn
import torch.optim as optim

# 定义策略网络
class PolicyNetwork(nn.Module):
    def __init__(self, state_dim, action_dim):
        super(PolicyNetwork, self).__init__()
        self.fc1 = nn.Linear(state_dim, 128)
        self.fc2 = nn.Linear(128, action_dim)
    
    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.softmax(self.fc2(x), dim=-1)
        return x

# 初始化环境和网络
env = gym.make('CartPole-v1')
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
policy_net = PolicyNetwork(state_dim, action_dim)
optimizer = optim.Adam(policy_net.parameters(), lr=0.001)

# 语言模型生成的计划
plan = ['balance_pole', 'move_cart']

# 子任务奖励函数
def reward_function(state, action, subtask):
    if subtask == 'balance_pole':
        return 1 if abs(state[2]) < 0.1 else 0  # 杆角度小则奖励
    elif subtask == 'move_cart':
        return 1 if abs(state[0]) < 0.5 else 0  # 车位置靠近中心则奖励

# 训练循环
for episode in range(1000):
    state = env.reset()
    done = False
    total_reward = 0
    current_subtask = plan[0]  # 初始子任务
    
    while not done:
        state_tensor = torch.FloatTensor(state).unsqueeze(0)
        action_probs = policy_net(state_tensor)
        action = torch.multinomial(action_probs, 1).item()
        next_state, _, done, _ = env.step(action)
        
        # 计算奖励
        reward = reward_function(state, action, current_subtask)
        total_reward += reward
        
        # 策略梯度更新(简化版)
        loss = -torch.log(action_probs[0, action]) * reward
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        state = next_state
    
    print(f'Episode {episode}, Total Reward: {total_reward}')

说明

  • 代码中假设了一个简单的计划(balance_polemove_cart),实际中计划可能更复杂,需要动态切换子任务。
  • 奖励函数根据子任务定义,实际应用中可能需要更精细的设计。

HIL-SERL 中的 RL 方法

方法概述

HIL-SERL(Human-in-the-Loop Skill Extraction and Reinforcement Learning)通过人机交互整合人类反馈,利用人类操作者的实时纠正来指导RL策略学习。人类提供示范或偏好,RL代理从中学习优化策略。

数学推导

HIL-SERL结合了模仿学习和强化学习。假设人类提供了一组示范轨迹:
D = { τ 1 , τ 2 , … , τ N } \mathcal{D} = \{\tau_1, \tau_2, \dots, \tau_N\} D={τ1,τ2,,τN}
其中每个轨迹 τ = [ ( s 0 , a 0 ) , ( s 1 , a 1 ) , … , ( s T , a T ) ] \tau = [(s_0, a_0), (s_1, a_1), \dots, (s_T, a_T)] τ=[(s0,a0),(s1,a1),,(sT,aT)]

模仿学习

首先,代理可以通过行为克隆(Behavioral Cloning)学习初始策略。目标是最小化示范数据上的负对数似然:
L ( θ ) = − ∑ τ ∈ D ∑ ( s , a ) ∈ τ log ⁡ π θ ( a ∣ s ) L(\theta) = -\sum_{\tau \in \mathcal{D}} \sum_{(s,a) \in \tau} \log \pi_\theta(a|s) L(θ)=τD(s,a)τlogπθ(as)
其中 π θ ( a ∣ s ) \pi_\theta(a|s) πθ(as) 是参数化的策略。

结合RL

在模仿学习的基础上,代理通过与环境交互,使用RL微调策略。奖励函数可以是任务特定的,也可以从人类反馈中学习(例如通过逆强化学习)。逆强化学习的目标是找到一个奖励函数 ( r(s,a) ),使得示范轨迹的累积奖励高于其他轨迹:
∑ ( s , a ) ∈ τ r ( s , a ) > ∑ ( s , a ) ∈ τ ′ r ( s , a ) , ∀ τ ∈ D , τ ′ ∉ D \sum_{(s,a) \in \tau} r(s,a) > \sum_{(s,a) \in \tau'} r(s,a), \quad \forall \tau \in \mathcal{D}, \tau' \notin \mathcal{D} (s,a)τr(s,a)>(s,a)τr(s,a),τD,τ/D

策略优化

RL阶段使用策略梯度方法优化策略,梯度更新为:
∇ J ( π ) ≈ ∑ t ∇ θ log ⁡ π ( a t ∣ s t ; θ ) ⋅ A ( s t , a t ) \nabla J(\pi) \approx \sum_t \nabla_\theta \log \pi(a_t|s_t; \theta) \cdot A(s_t, a_t) J(π)tθlogπ(atst;θ)A(st,at)
其中 A ( s t , a t ) A(s_t, a_t) A(st,at) 可以基于任务奖励或人类反馈估计。

代码示例

以下是一个简化的Python代码示例,展示HIL-SERL中模仿学习和RL的结合:

import gym
import torch
import torch.nn as nn
import torch.optim as optim

# 定义策略网络
class PolicyNetwork(nn.Module):
    def __init__(self, state_dim, action_dim):
        super(PolicyNetwork, self).__init__()
        self.fc1 = nn.Linear(state_dim, 128)
        self.fc2 = nn.Linear(128, action_dim)
    
    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = torch.softmax(self.fc2(x), dim=-1)
        return x

# 初始化环境和网络
env = gym.make('CartPole-v1')
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
policy_net = PolicyNetwork(state_dim, action_dim)
optimizer = optim.Adam(policy_net.parameters(), lr=0.001)

# 假设的人类示范数据(state, action 对)
demonstrations = [(env.reset(), 0), (env.reset(), 1)]  # 简化示例

# 行为克隆预训练
for state, action in demonstrations:
    state_tensor = torch.FloatTensor(state).unsqueeze(0)
    action_tensor = torch.LongTensor([action])
    action_probs = policy_net(state_tensor)
    loss = -torch.log(action_probs[0, action_tensor])
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

# RL微调
for episode in range(1000):
    state = env.reset()
    done = False
    total_reward = 0
    
    while not done:
        state_tensor = torch.FloatTensor(state).unsqueeze(0)
        action_probs = policy_net(state_tensor)
        action = torch.multinomial(action_probs, 1).item()
        next_state, reward, done, _ = env.step(action)
        
        # 策略梯度更新
        loss = -torch.log(action_probs[0, action]) * reward
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        state = next_state
        total_reward += reward
    
    print(f'Episode {episode}, Total Reward: {total_reward}')

说明

  • 代码首先通过行为克隆预训练策略,然后使用RL微调。
  • 实际HIL-SERL中,人类反馈可能实时提供(如通过遥控器纠正动作),需要更复杂的实时交互机制。

RL方法小结
  • Plan-Seq-Learn:通过语言模型指导RL学习低层次策略,利用层次RL结构和子任务奖励设计实现任务分解与执行。
  • HIL-SERL:结合人类反馈,通过模仿学习初始化策略,再用RL优化,适用于需要人类指导的复杂任务。

这些数学推导和代码示例展示了两种方法的核心实现细节,有助于更深入理解其在机器人控制中的应用。

效率与实时性能

双系统VLA的一个关键挑战是实现高效和实时性能,尤其是在计算密集型模型下。通过使用RL训练低层次控制系统,可以确保其高效快速运行,因为RL可以学习针对特定任务优化的策略。此外,人机交互RL可以提供实时纠正和指导,进一步增强系统在实时任务中的表现。例如,“Plan-Seq-Learn”通过RL学习低层次策略,展示了在长时程任务中的快速适应能力,而HIL-SERL则通过人类反馈实现了高频控制和精确操控。

益处与挑战
益处
  • 适应性和泛化性提升:RL使机器人能够适应新任务和环境,特别是在动态和接触丰富场景下。
  • 精确性和效率提升:通过优化控制策略,RL提高了任务执行的精确性和效率,例如HIL-SERL在复杂任务中的表现。
  • 从经验和反馈中学习:RL能够从机器人自身的试错和人类反馈中学习,增强系统能力。
挑战
  • 高样本复杂性:RL需要大量计算资源和时间,特别是在现实世界中收集数据成本高。
  • 安全性和稳定性:在学习过程中确保安全和稳定性是一个重大挑战,尤其是在物理机器人操作中。
  • 奖励函数设计:设计适当的奖励函数并处理复杂任务中的稀疏奖励是一个技术难题。
结论

强化学习在提升双系统VLA性能方面发挥了关键作用,通过训练低层次控制策略、潜在优化高层次规划、端到端训练和人机交互RL等多种方式,RL使机器人系统更加适应和高效。随着研究的深入,RL技术与VLA模型的进一步整合有望带来更复杂和高效的机器人操控系统。

表格:RL在双系统VLA中的应用示例
研究名称RL应用领域主要成果相关附件ID
Plan-Seq-Learn低层次控制策略学习接触丰富任务成功率达96%,样本效率高0
HIL-SERL人机交互RL,精确操控成功率100%,比人类快1.8倍,训练时间1-2.5小时2
GROOT N1端到端训练(流匹配)模拟和现实世界测试优于基线,低数据场景高效4
关键引用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值