数字图像处理03(卷积、滤波、边缘检测——算法原理)

本文介绍了图像处理中的卷积、滤波和边缘检测原理。卷积与相关的主要区别在于卷积核是否旋转,而在OpenCV中两者常被视为相同操作。高斯滤波通过高斯核实现图像平滑,核由二维高斯函数计算得出。文中还探讨了高斯核的计算与验证,以及梯度算子和Canny算子在边缘检测中的应用。
摘要由CSDN通过智能技术生成

1.首先介绍一下相关和卷积的关系:

图像滤波的计算过程分析

    滤波通常是用卷积或者相关来描述,而线性滤波一般是通过卷积来描述的。他们非常类似,但是还是会有不同。下面我们来根据相关和卷积计算过程来体会一下他们的具体区别:

卷积的计算步骤:

  1. 卷积核绕自己的核心元素顺时针旋转180
  2. 移动卷积核的中心元素,使它位于输入图像待处理像素的正上方
  3. 在旋转后的卷积核中,将输入图像的像素值作为权重相乘
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值