红外图像的特点

红外图像成像特点:

由于红外图像是通过“测量”物体向外辐射的热量而获得的,故与可将光图像相比:

分辨率差
对比度低
信噪比低
视觉效果模糊
灰度分布与目标反射特征无线性关系
局部不变特征

目前绝大多数景物匹配算法提取的都是全局不变特征,它能很好解决同一目标的一致性判决问题,但很难消除图像的成像畸变。当图像之间的成像畸变很复杂时,利用全局信息进行匹配非常困难,特别是存在局部遮挡时,全图特征会随之变化。

基于以上特点,红外图像的匹配识别与跟踪一般都是基于特征的方法,一般都是采用局部不变特征来对红外图像进行处理识别。

局部特征提取,即,将图像整体分割成若干个组成部分,对每一部分提取全局特征。此处的分割并不是我们直观认为的分割,理想情况下,人们总希望局部特征对应客观世界的物体的一部分,但是这是不现实的,往往需要借助图像处理技术对高层场景进行理解。

局部稳定特征有:

角点特征
边缘特征
直线特征
纹理特征

基于以上特征构建的特征
特征提取步骤:
局部不变特征检测:检测特征的位置————检测子算法
局部不变特征描述:定量化数据描述方法——描述子算法

不变特征检测算法
  • 角点检测算子
Harris
SUSAN
CSS
FAST(features from accelerated segment test) 等
  • 斑点检测算子
DoG(高斯差分算子)
Multi-Scale Harris
SIFT
SURF等
  • 区域检测子
Salient Region
EBR
IBR
MSER
Hessian-Affine
Harrise-Affine等
特征描述算子

特征描述算子是一种图像局部结构特征的定量化数据描述,它应该能充分反应特征点附近图像的形状和纹理结构特性。

一个理想的特征描述子应该具有以下特征:

鲁棒性:仿射变换/密度变换/噪声干扰下具有稳定工作的能力
独特性:局部结构发生变化时,具有捕获和反应这一变化的能力
匹配速度:相似性比较时的运算速度,特征空间维数越高,速度越差

描述子分类:

基于图像梯度分布(SIFT)
基于空间频率
基于微分和不变矩
红外图分割

红外图信息量少,根据红外图明显的亮度特征,可以考虑阈值分割
在这里插入图片描述

### 变压器渗漏油时红外图像特点分析 变压器在运行过程中可能会发生渗漏油的情况,这不仅会影响其正常工作性能,还可能导致严重的安全隐患。通过红外热成像技术可以有效检测此类问题。 #### 1. 温度分布异常 当变压器内部存在渗漏油情况时,由于润滑油的减少或流失,某些部件可能因缺乏润滑而产生额外摩擦热量,从而导致局部温度升高。这种温度变化会在红外图像上表现为特定区域的颜色加深或者亮度增加[^3]。 #### 2. 表面反射特性改变 油液泄漏到外壳表面后会形成一层薄膜,在阳光照射或其他光源作用下会产生不同的光谱响应;而在红外波段内,则可能出现特殊的吸收峰或发射率差异现象。这些特征可以通过高分辨率的深度可分离空洞卷积金字塔模型来捕捉并加以区分[^1]。 #### 3. 边界清晰度降低 通常情况下,健康状态下的金属构件边缘应该十分锐利分明;然而一旦有液体溢出覆盖在其上面,则会使该部分看起来模糊不清。利用训练好的神经网络算法处理大量标注样本数据集(如配电变压器检测图像),可以帮助识别这类细微差别[^2]。 ```python import cv2 from tensorflow.keras.models import load_model def detect_leakage(image_path, model_path): """ Detects transformer oil leakage using a pre-trained deep learning model. Args: image_path (str): Path to the infrared image file. model_path (str): Path to the trained neural network model. Returns: bool: True if leakage is detected; False otherwise. """ img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) resized_img = cv2.resize(img, (224, 224)) normalized_img = resized_img / 255.0 model = load_model(model_path) prediction = model.predict(normalized_img.reshape((1, 224, 224, 1))) return prediction.argmax() == 1 ``` 上述代码片段展示了一个简单的基于Python实现的方法用于判断给定图片是否存在变压器漏油状况。其中采用了预训练过的Keras/TensorFlow模型来进行预测操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值