基础数学(六)——非线性方程求根的数值解法

文章详细介绍了非线性方程的求解步骤,包括二分法、不动点迭代法和牛顿迭代法。讨论了各种方法的优缺点,如二分法的简单但无法处理偶数重根,牛顿法的高效但局部收敛。还涉及了迭代法的收敛性证明,全局与局部收敛准则,以及简化牛顿法和重根处理策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

期末考核方式
  • 给你一个非线性方程,让你自己去构造两个收敛的迭代格式,并给出收敛的理由,以及关于收敛速度的对比。其中一种可以写牛顿迭代,另外一种自己创造。
  • 要能使用全局收敛准则,去验证迭代格式的收敛性。或者在知道解的情况下,验证导数的上下界限是否小于一。
  • 使用收敛阶去比较,两个不同的迭代格式的收敛速度。或者使用迭代格式的导数进行比较。一阶导为二阶,二阶导为三阶。
  • 对于同阶比较,通过比较导数绝对值进行实现。
求解的一般步骤

在这里插入图片描述

  • 通过零点存在定理,判定根的大概位置
    在这里插入图片描述
  • 找到有根区间较大时,将大区间进行n等分,变成小区间人,然后逐个进行排查,确定有根区间的更小区间。
    在这里插入图片描述
二分法求根

在这里插入图片描述
在这里插入图片描述在这里插入图片描述

二分法计算样例

在这里插入图片描述

二分法的优缺点

在这里插入图片描述

  • 注意:不能求偶数重根和复数根,两边主要不异号,就求不出来。
不动点迭代法

在这里插入图片描述
在这里插入图片描述

全局收敛准则

在这里插入图片描述

  • 通过全局收敛准则来证明收敛性,通过L的大小来比较收敛的快慢。
  • 压缩映射,自变量∈【a,b】,对应的生成结果也一定是属于【a,b】
  • 同时还要满足的迭代格式导数的绝对值小于一。
收敛性证明样例

在这里插入图片描述在这里插入图片描述

  • 全局收敛的要求太高,大部分的收敛格式都不能满足,所以需要考虑局部收敛。
局部收敛性

在这里插入图片描述

  • 注意:这里虽然要求了x﹡,但是考试的时候老师会给你其具体的值。一般是用1进行比较判定的。
收敛阶数的定义

在这里插入图片描述
在这里插入图片描述

迭代法具体例题(考试必考)

在这里插入图片描述

在这里插入图片描述

牛顿迭代法

在这里插入图片描述

  • 就是用一次切线方程,求解即可。
    在这里插入图片描述
    在这里插入图片描述
例题(使用牛顿法近似目标解)(考过)

在这里插入图片描述

  • 下述这个是不会的,这里判定收敛阶数,对Xn进行极限。
    在这里插入图片描述
牛顿迭代收敛阶数

在这里插入图片描述

  • 牛顿迭代
    • 优点:平方收敛,在迭代过程中只需要迭代几次就可得到精确的解
    • 缺点:
      • 受限于初值的选择,局部收敛
      • 计算量大,还要计算一阶导数值
简化牛顿、下山法和重根处理(了解)
简化牛顿法

在这里插入图片描述

  • 每一次都是用第一次的导数作为斜率,减少计算量。局部收敛,初值选的不好,就不会收敛。
牛顿下山法

在这里插入图片描述

重根处理(考试重点)
  • 牛顿迭代对于重根而言,默认牛顿迭代是一阶收敛。
    在这里插入图片描述
  • 对于重根而言:知道有多少重的,将结果写在前面,实现二重收敛。
  • 下述为重数m未知,直接除以一阶导数即可实现,将之进行降阶,化成单根。
    在这里插入图片描述
  • 需要知道的两件事
    • 标准的牛顿迭代,不做任何处理,对于任何重根都是局部收敛,m越大收敛越慢
    • 要么知道根的重数,要么计算二阶导数
非线性方程组(不考)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值