DeepSeek R1 14B + LM Studio 本地大模型实测

DeepSeek R1 14B + LM Studio 本地大模型实测

💡 本文将介绍如何使用 LM Studio 启动大语言模型(LLM),并进行推理测试。LM Studio 是一款轻量级的本地大模型推理工具,适用于 Windows 和 macOS,支持 Llama.cpp 推理引擎,可轻松运行 LLaMA2、Mistral、Qwen、DeepSeek 等模型

🚀 本教程适合入门用户,重点讲解 LM Studio 的安装、模型下载、配置及测试步骤,并附带截图演示!


1. LM Studio 介绍

什么是 LM Studio?

  • 一款 开源 的本地 LLM 推理 GUI 工具
  • 支持 GGUF 格式大模型(Llama.cpp 后端)
  • 支持 GPU 加速,可用 RTX 4060 / 4070 / 4090 运行大模型
  • 可直接在本地进行 离线 AI 对话,不依赖 OpenAI API

支持的模型

  • Meta LLaMA2 / LLaMA3
  • Mistral / Mixtral
  • Qwen / DeepSeek
  • Gemma / Phi-2
  • Hugging Face 上的任意 GGUF 格式模型

本地大模型部署方式对比

部署方式OllamaLM StudiovLLM
产品定位本地快速体验图形化交互工具生产级推理引擎
用户群体开发者/爱好者非技术用户企业/工程师
部署复杂度中高
性能优化基础一般极致
适用场景开发测试、原型验证个人使用、教育演示高并发生产环境
扩展性有限强(分布式/云原生)

2. LM Studio 安装

下载 & 安装

👉 官网下载地址https://lmstudio.ai/

Windows / macOS 用户可直接下载并安装,安装步骤很简单,默认下一步即可。

🚀 安装完成后,启动 LM Studio,进入主界面:点击跳过即可。
在这里插入图片描述
在这里插入图片描述
点击右下角设置,选择语言,设置简体中文。
在这里插入图片描述


3. 下载 & 加载大模型

方式 1:LM Studio 直接下载

  1. 打开 LM Studio,进入 Model(模型)页面
  2. 发现 处搜索 LLaMA2-7B / Qwen-7B / DeepSeek-7B/DeepSeek-R1-Distill-Qwen-14B
  3. 选择 GGUF 格式(如 DeepSeek-R1-Distill-Qwen-14B-Q4_K_M.gguf)
  4. 点击下载,等待模型下载完成(可能会出现网络问题无法下载)
    在这里插入图片描述

💡 建议选择 4-bit / 5-bit 量化模型(Q4_K_M、Q5_K_M),更适合消费级显卡(如 4060Ti)

方式 2:手动下载 GGUF 模型

如果 LM Studio 下载速度慢(或者搜索访问不到模型结果),可以去 Hugging Face 或者魔塔社区 手动下载:

  1. 打开 Hugging Face 模型仓库huggingface 或者 魔塔社区

  2. 搜索 DeepSeek-R1-Distill-Qwen-14B-GGUF 或其他模型(可根据个人PC条件进行选择)
    个人PC情况:CPU:12600KF / 显卡:七彩虹 RTX4060Ti Ultra W OC 8G / 内存:32G
    DeepSeek 7B(Q4_K_M / Q5_K_M)可运行(推荐)
    Qwen 7B(Q4_K / Q5_K)可运行(推荐)
    DeepSeek 14B(Q4_K_M) ⚠️ 勉强可跑(性能会受影响,会占满 8GB 显存,可能部分数据溢出到内存,导致性能下降)
    DeepSeek 32B(Q4_K_M) ⚠️ 不推荐(性能问题)
    两个网站的14B模型的具体链接如下:
    https://huggingface.co/bartowski/DeepSeek-R1-Distill-Qwen-14B-GGUF/tree/main
    https://www.modelscope.cn/models/unsloth/DeepSeek-R1-Distill-Qwen-14B-GGUF/files

    量化版本模型大小(VRAM占用)适用设备
    Q2_K~3GB-4GB VRAM轻量运行,最低精度
    Q3_K_M~4GB-5GB VRAM平衡性能与精度
    Q4_K_M~5GB-6GB VRAM高质量、适用于 4060 Ti
    Q5_K_M~6GB-7GB VRAM更高精度,但可能略卡顿
    Q6_K~7GB-8GB VRAM最高量化精度,但对 8GB 显存设备来说压力大

    在这里插入图片描述

  3. 下载 .gguf 文件,并手动放入 LM Studio 的模型目录

    注意默认模型目录在C盘,我们手动改一下 📂 默认模型路径(可手动调整):
    Windows: C:\Users\你的用户名\.lmstudio\models
    macOS: ~/Library/Application Support/LM Studio/models/在这里插入图片描述
    在这里插入图片描述
    保存后注意还需要在模型目录下手动创建一个 Publisher/Repository 目录,并将我们的模型放在此处。
    在这里插入图片描述
    再回到 LMStudio 中可以看到我们下载的模型。

    在这里插入图片描述


4. 启动模型 & 运行测试

运行 DeepSeek-R1-Distill-Qwen-14B-GGUF

  1. 进入 Chat(聊天)界面

  2. 选择下载好的模型(如 DeepSeek-R1-Distill-Qwen-14B-GGUF)
    在这里插入图片描述
    在这里插入图片描述

  3. 调整参数,点击加载模型(这里GPU卸载应该是是翻译问题,意思是GPU负载)
    在这里插入图片描述

  4. 输入问题,进行 AI 对话测试

    提示词:Java实现一个单例模式

    Java实现一个单例模式(思考推理稍微有点慢,但是结果比较准确)

    在这里插入图片描述
    推理过程
    在这里插入图片描述
    结果比较准确,两个方式都解答出来了。
    在这里插入图片描述
    提示词:RPC是基于TCP的吗

    RPC是基于TCP的吗(思考推理稍微有点慢,但是结果比较准确)

    在这里插入图片描述
    在这里插入图片描述
    提示词:9.9和9.11哪一个数字大?

    这是一个比较有意思的问题(哈哈哈思考推理比较快,但是结果不太对,比较独特的推理,这个问题很多大模型都会答不太对)
    在这里插入图片描述


5. GPU 加速 & 参数优化

开启 GPU 推理

Settings(设置) 里调整:

  • GPU Offload建议 20-30启用 GPU 加速
    在这里插入图片描述
    验证运行过程还是比较吃资源,运行时电脑稍微有点卡。
    在这里插入图片描述

💡 不同显存推荐参数

模型参数量 (B)原始 FP16 (GB)Q4_K_M (GB)Q5_K_M (GB)推荐显卡
DeepSeek 7B7B~28GB~4GB~5GB4060Ti 8G
DeepSeek 14B14B~56GB~8GB~10GB4070 12G
DeepSeek 32B32B~128GB~18GB~22GB4090 24G
Qwen 7B7B~28GB~4GB~5GB4060Ti 8G
  • DeepSeek-7B / Qwen-7B 适合 4060Ti
  • DeepSeek-14B 推荐 4070 12G 以上
  • DeepSeek-32B 推荐 4090 24G+

6. 总结

LM Studio 是最简单的本地大模型推理工具之一
支持 LLaMA / Qwen / Mistral / DeepSeek 等 GGUF 模型
可以用 RTX 4060Ti / 4070 / 4090 跑 7B / 14B/ 32B 量化模型
适合 AI 开发者 / 学习者 / 自媒体从业者本地跑大模型

📢 模型测试验证视频后续更新,包含由清华大学新闻与传播学院沈阳团队出品的《DeepSeek:从入门到精通》PDF版DeepSeek课程课件,可通过关注B站账号私信获取。
MacBook Air (Apple M2)DeepSeek R1 7B 本地大模型效果实测

💡 你是否用过 LM Studio 跑本地大模型?欢迎评论区交流!🌟 你的支持是我持续创作的动力,欢迎点赞、收藏、分享!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员小台

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值