基于LM Studio的大模型本地部署:一步步教你搭建AI开发环境

之前分享了 Ollama 这次分享一下 另一款本地运行大模型的工具LM Studio

什么是 LM Studio?

LM Studio 是一款用于在您的电脑上开发和实验LLMs的桌面应用程序。

前排提示,文末有大模型AGI-CSDN独家资料包哦!

关键功能

  • 桌面应用程序,用于运行本地 LLMs
  • 一个熟悉的聊天界面
  • 搜索和下载功能(通过 Hugging Face 🤗)
  • 一个可以监听类似 OpenAI 端点的本地服务器
  • 本地模型和配置管理系统
系统要求

LM Studio 通常支持 Apple Silicon Macs、x64/ARM64 Windows PC 和 x64 Linux PC。

macOS
  • 芯片:苹果硅(M1/M2/M3/M4)。
  • macOS 13.4 或更高版本是必需的。
    • 对于 MLX 模型,需要 macOS 14.0 或更高版本。
  • 16GB+内存推荐。
  • 您可能仍然可以在 8GB 的 Mac 上使用 LM Studio,但请坚持使用较小型号和适度的上下文大小。
  • 英特尔 Mac 目前不支持。
Windows

LM Studio 支持 x64 和 ARM(Snapdragon X Elite)架构的系统。

  • CPU:需要支持 AVX2 指令集(针对 x64)
  • RAM: LLMs可能会消耗大量 RAM。建议至少 16GB 的 RAM。
Linux
  • LM Studio for Linux 以 AppImage 的形式分发。
  • Ubuntu 20.04 或更高版本是必需的
  • 仅支持 x64,暂不支持 aarch64
  • Ubuntu 版本高于 22 的版本测试不佳。
  • CPU:中央处理器
  • LM Studio 默认支持 AVX2
如何安装 LM Studio?

LM Studio 适用于 macOS、Windows 和 Linux。

前往下载页面并下载适用于您的操作系统的安装程序。

设置中文

右下角设置

设置模型目录

模型目录最好不要有中文特殊符号,最好是英文字母

下载模型
如果可以访问国外网站

镜像网站下载

https://hf-mirror.com/

下载gguf模型放到前面设置的模型目录里面

模型挑选

模型文件大小小于自己显存大小,但接近显存大小的效果肯定越好

GGUF模型

GGUF,全称 GPT-Generated Unified Format,是一种新型的文件格式专门用于存储和交换大型机器学习模型的数据。这种格式针对模型的快速加载和保存进行了优化,使其在推理方面更加高效。GGUF可以有多重不同版本的量化,Q2、Q3、Q4、Q5、Q6、Q8,这些数字表示模型权重的位数,位数越高,模型的精度通常越高,但所需的存储空间和计算资源也越多。

不是所有 gguf 格式的模都能用 LM Studio 运行,你可以打开下面这个链接,这里所有模型都可以用LM Studio 运行:https://hf-mirror.com/lmstudio-community *量化是指将模型中的高精度数字转换为低精度数字,以减少模型的存储空间和计算需求。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员二飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值