迁移学习是机器学习领域中一种强大的技术,可以将在一个任务上训练好的模型应用到另一个相关任务上。而微调则是迁移学习的一种常见方法,通过在预训练模型的基础上进行有针对性的训练,以适应新的任务。在本文中,我们将探讨如何使用PyTorch实现迁移学习和微调方法。
首先,我们需要加载预训练模型。PyTorch提供了许多经过预训练的模型,如AlexNet、VGG、ResNet等。可以通过使用torchvision库中的函数来加载这些预训练模型。下面是一个加载ResNet-50预训练模型的示例代码:
import torch
import torchvision.models as models
# 加载预训练模型
model = models.resnet50(pretrained=