Matlab 欧式聚类

62 篇文章 ¥59.90 ¥99.00
本文详细介绍了如何在Matlab中实现欧式聚类,包括数据预处理、使用欧式距离作为距离度量、运用kmeans函数进行聚类,以及通过散点图可视化结果。同时还提供了一段完整的欧式聚类代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Matlab 欧式聚类

欧式聚类是一种基于距离度量的聚类方法,常用于数据挖掘和模式识别领域。Matlab作为一个强大的数学软件,提供了丰富的聚类算法库,包括欧式聚类。本文将介绍如何利用Matlab实现欧式聚类,并给出相应的源代码。

  1. 数据预处理

聚类算法的第一步是数据预处理。在这个阶段,我们需要对数据进行标准化处理,以便在距离度量时各维度之间具有可比性。

下面是一个简单的数据标准化例子:

data = rand(50, 5)*100; % 构造随机数据
data_mean = mean(data); % 求均值
data_std = std(data);   % 求标准差
data_norm = (data - data_mean)./data_std; % 标准化处理
  1. 距离度量

欧式聚类是基于距离度量的,因此需要选择一种距离度量方法。常用的方法有欧式距离、曼哈顿距离、余弦距离等。这里我们采用欧式距离作为距离度量方法。

function d = euclidean_distance(x, y)
    d = sqrt(sum((x - y).^2));
end
  1. 聚类算法

在数据预处理和距离度量后,我们就可以使用聚类算法进行聚类了。在Matlab中,可以

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值