Python实现Friedman检验

299 篇文章 ¥59.90 ¥99.00
本文介绍了Python中利用SciPy库的friedmanchisquare()函数进行Friedman检验,这是一种非参数的ANOVA方法,用于比较相关性数据的差异。通过举例展示了如何分析多个模型的F1 score值,得出结论:当p值大于显著性水平时,模型间无显著差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python实现Friedman检验

Friedman检验也叫基于秩和的变异数分析(Rank-Based Analysis of Variance, ANOVA),是一种非参数检验方法,用于比较多组相关性数据的差异性。

在Python中,可以使用SciPy库中的friedmanchisquare()函数来实现Friedman检验。该函数的语法格式如下:

scipy.stats.friedmanchisquare(*args)

其中,*args表示传入要比较的多组数据,每组数据为一个一维数组。

接下来,我们以一个例子来说明如何使用Python进行Friedman检验。

假设我们有三个模型,每个模型按照不同的参数设置,跑出了不同的F1 score值,数据如下:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值