1. 排名的均值
对于 k 个处理,每个处理的排名 r_i 是从1到 k 的整数。由于这些排名是等概率的,排名的期望值可以计算为:
均值(r_i) = (1 + 2 + 3 + ⋯ + k) / k = k(k+1) / 2k = (k+1) / 2
因此,所有处理的排名的期望为 (k+1)/2。
2. 方差的计算步骤
方差的定义是排名值与其均值之间差值的平方的期望,即:
方差(r_i) = (1 / k) * ∑[(r_i - (k+1)/2)^2], i=1 to k
我们首先计算 ∑(r_i^2) 和 ∑(r_i),然后代入方差公式。
2.1 计算 ∑(r_i^2)
我们需要计算排名的平方和,即 1^2 + 2^2 + ⋯ + k^2。根据已知公式:
∑(i^2), i=1 to k = k(k+1)(2k+1) / 6
2.2 计算 ∑(r_i)
∑(i), i=1 to k = k(k+1) / 2
2.3 代入方差公式
现在我们代入方差公式。首先,将排名与均值的差值平方展开:
方差(r_i) = (1/k) * ∑[r_i^2 - 2r_i * (k+1)/2 + ((k+1)/2)^2], i=1 to k
将求和项拆开:
方差(r_i) = (1/k) * [∑(r_i^2) - (k+1) * ∑(r_i) + k * ((k+1)/2)^2]
现在将各个部分代入:
∑(r_i^2) =