ARCH模型类

ARCH模型类

1 ARCH模型

异方差问题一般出现在带有截面的观测数据中,但对于某些时间序列也存在异方差问题。例如股票收益率波动较大的观测一般集聚在一起,而波动较小的观测集聚在一起,这表现出一种“波动集聚”。

1.1 ARCH模型

考虑模型
y t = x t ′ β + ε t (1) y_{t}=\boldsymbol{x}_{t}^{\prime} \boldsymbol{\beta}+\varepsilon_{t}\tag{1} yt=xtβ+εt(1)
ε t \varepsilon_{t} εt条件方差为 σ t 2 ≡ Var ⁡ ( ε t ∣ ε t − 1 , ⋯   ) \sigma_{t}^{2} \equiv \operatorname{Var}\left(\varepsilon_{t} \mid \varepsilon_{t-1}, \cdots\right) σt2Var(εtεt1,),这表明扰动项不是同方差,它随着时间变动而变动。模型(1)中, ε t \varepsilon_t εt是引起 y t y_t yt变化的系统扰动的部分, y t y_t yt的波动程度取决于 ε t \varepsilon_t εt的分布情况,将扰动项的方差视为扰动项的函数
σ t 2 = α 0 + α 1 ε t − 1 2 (2) \sigma_{t}^{2}=\alpha_{0}+\alpha_{1} \varepsilon_{t-1}^{2}\tag{2} σt2=α0+α1εt12(2)
式表明,上一期的扰动项的会对本期扰动项的方差产生影响。称模型(1)为均值方程,模型(2)为方差方程。均值方程的自变量如果视为被解释变量的滞后值,则是标准的ARCH模型,记作
{ x t = β 0 + β 1 x t − 1 + β 2 x t − 2 + … + β p x t − p + u t σ t 2 = E ( u t 2 ) = α 0 + α 1 u t − 1 2 + α 2 u t − 2 2 + … + α q u t − q 2 (3) \left\{\begin{array}{l} x_{t}=\beta_{0}+\beta_{1} x_{t-1}+\beta_{2} x_{t-2}+\ldots+\beta_{p} x_{t-p}+u_{t} \\ \sigma_{t}^{2}=\mathrm{E}\left(u_{t}^{2}\right)=\alpha_{0}+\alpha_{1} u_{t-1}^{2}+\alpha_{2} u_{t-2}^{2}+\ldots+\alpha_{q} u_{t-q}^{2} \end{array}\right.\tag{3} {xt=β0+β1xt1+β2xt2++βpxtp+utσt2=E(ut2)=α0+α1ut12+α2ut22++αqutq2(3)
式中第一个方程为均值方程,即服从自回归过程 A R ( p ) AR(p) AR(p),第二个方程为条件方差方程, μ t ∼ A R C H ( q ) \mu_t \sim ARCH(q) μtARCH(q) 。由于自回归方程为平稳序列建模方法,因此随机过程 { x t } \{x_t\} {xt}必须是平稳的,且特征方程满足
1 − β 1 L − β 2 L 2 − … − β p L p = 0 1-\beta_{1} L-\beta_{2} L^{2}-\ldots-\beta_{p} L^{p}=0 1β1Lβ2L2βpLp=0
的特征根全部在单位圆外。 { x t } \{x_t\} {xt}条件期望为
E ( x t ∣ x t − 1 , … , x t − p ) = β 0 + β 1 x t − 1 + β 2 x t − 2 + … + β p x t − p \mathbf{E}\left(x_{t} \mid x_{t-1}, \ldots, x_{t-p}\right)=\beta_{0}+\beta_{1} x_{t-1}+\beta_{2} x_{t-2}+\ldots+\beta_{p} x_{t-p} E(xtxt1,,xtp)=β0+β1xt1+β2xt2++βpxtp
当时间 t → T t\to T tT时, x t x_t xt的无条件期望为
E ( x t ) = β 0 1 − β 1 − ⋯ − β p \mathbf{E}\left(\boldsymbol{x}_{t}\right)=\frac{\beta_{0}}{1-\beta_{1}-\cdots-\beta_{p}} E(xt)=1β1βpβ0


1.2 ARCH模型性质

  • 非负性

ARCH方程 σ t 2 = E ( u t 2 ) = α 0 + α 1 u t − 1 2 + α 2 u t − 2 2 + … + α q u t − q 2 \sigma_{t}^{2}=\mathrm{E}\left(u_{t}^{2}\right)=\alpha_{0}+\alpha_{1} u_{t-1}^{2}+\alpha_{2} u_{t-2}^{2}+\ldots+\alpha_{q} u_{t-q}^{2} σt2=E(ut2)=α0+α1ut12+α2ut22++αqutq2中所有扰动项平方项均非负,因此各个参数 α i ≥ 0 ( i = 1 , 2 … q ) \alpha_i\ge 0(i=1,2\dots q) αi0(i=1,2q),且 α 0 > 0 \alpha_0 > 0 α0>0。当 α i = 0 ( i = 1 , 2 … q ) \alpha_i = 0(i=1,2\dots q) αi=0(i=1,2q),则 σ t 2 = α 0 > 0 \sigma_t^2 = \alpha_0>0 σt2=α0>0

  • 平稳性

为了保证方差序列也是平稳的,需要满足ARCH的特征方程
1 − α 1 L − α 2 L 2 − … − α q L q = 0 1-\alpha_{1} L-\alpha_{2} L^{2}-\ldots-\alpha_{q} L^{q}=0 1α1Lα2L2αqLq=0
的所有特征根全部在单位圆外。

  • 归一性

ARCH方程的所有参数 ∑ i q α i ∈ [ 0 , 1 ) ( i = 1 , 2 … q ) \sum_i^q\alpha_i \in[0,1)(i = 1,2\dots q) iqαi[0,1)(i=1,2q),

证明:ARCH方程两端求期望
σ t 2 = α 0 + α 1 E ( u t − 1 2 ) + α 2 E ( u t − 2 2 ) + … + α q E ( u t − q 2 ) = α 0 + α 1 σ t − 1 2 + α 2 σ t − 2 2 + … + α q σ t − q 2 \begin{aligned} \sigma_{t}^{2} &=\alpha_{0}+\alpha_{1} \mathbf{E}\left(u_{t-1}^{2}\right)+\alpha_{2} \mathbf{E}\left(u_{t-2}^{2}\right)+\ldots+\alpha_{q} \mathbf{E}\left(u_{t-q}^{2}\right) \\ &=\alpha_{0}+\alpha_{1} \sigma_{t-1}^{2}+\alpha_{2} \sigma_{t-2}^{2}+\ldots+\alpha_{q} \sigma_{t-q}^{2} \end{aligned} σt2=α0+α1E(ut12)+α2E(ut22)++αqE(utq2)=α0+α1σt12+α2σt22++αqσtq2
t → ∞ t \to \infty t时,
σ 2 = α 0 + α 1 σ 2 + α 2 σ 2 + … + α q σ 2 \sigma^{2}=\alpha_{0}+\alpha_{1} \sigma^{2}+\alpha_{2} \sigma^{2}+\ldots+\alpha_{q} \sigma^{2} σ2=α0+α1σ2+α2σ2++αqσ2
解得
σ 2 = 1 1 − ∑ i = 1 q α i α 0 \sigma^{2}=\frac{1}{1-\sum_{i=1}^{q} \alpha_{i}} \alpha_{0} σ2=1i=1qαi1α0
由于 α 0 ≥ 0 \alpha_0\ge0 α00,故 ∑ i q α i ∈ [ 0 , 1 ) ( i = 1 , 2 … q ) \sum_i^q\alpha_i \in[0,1)(i = 1,2\dots q) iqαi[0,1)(i=1,2q),才能保证 σ t 2 \sigma^2_t σt2非负。


1.3 ARCH模型估计

ARCH模型用极大似然方法估计。设均值方程为
y t = x t ′ β + ε t y_{t}=\boldsymbol{x}_{t}^{\prime} \boldsymbol{\beta}+\varepsilon_{t} yt=xtβ+εt
其中参数向量 β = ( β 0 β 1 , … , β k − 1 ) ′ \beta=\left(\beta_{0} \quad \beta_{1}, \ldots, \beta_{k-1}\right)^{\prime} β=(β0β1,,βk1),数据向量 x t = ( 1 x 1 , … , x k − 1 ) ′ x_{t}=\left(1 \quad x_{1}, \ldots, x_{k-1}\right)^{\prime} xt=(1x1,,xk1)。注意 x t x_t xt即包括 y y y的滞后项(AR过程)也可以包括其他外生变量(ADL过程)。扰动项 ε t ∼ A R C H ( q ) \varepsilon_t \sim ARCH(q) εtARCH(q)。由于ARCH过程存在滞后 q q q项,为了保证样本容量为 T T T,假设总的样本容量对应的时间观测点为 1 , 2 , 3 … T , … T + q 1,2,3\dots T,\dots T+q 1,2,3T,T+q。设方程(1)的扰动项
ε t = h t v t \boldsymbol{\varepsilon}_{t}=\sqrt{h_{t}} \boldsymbol{v}_{t} εt=ht vt
其中 v t v_t vt为服从 i i d ( 0 , 1 ) iid(0,1) iid(0,1), C o v ( x t , v t ) = 0 Cov(x_t,v_t) = 0 Cov(xt,vt)=0, h t h_t ht为扰动项 ε t \varepsilon_t εt的方差,即
h t = α 0 + α 1 u t − 1 2 + α 2 u t − 2 2 + … + α q u t − q 2 h_{t}=\alpha_{0}+\alpha_{1} u_{t-1}^{2}+\alpha_{2} u_{t-2}^{2}+\ldots+\alpha_{q} u_{t-q}^{2} ht=α0+α1ut12+α2ut22++αqutq2
显然 σ t 2 = E ( u t 2 ) = h t , E ( u t ) = 0 \sigma_{t}^{2}=\mathbf{E}\left(u_{t}^{2}\right)=h_{t}, \quad \mathbf{E}\left(u_{t}\right)=0 σt2=E(ut2)=ht,E(ut)=0。如果 ε t \varepsilon_t εt服从正态分布,则 y t y_t yt的条件概率密度函数为
f ( y t ∣ x t , α i , β ) = 1 2 π h t exp ⁡ ( − ( y t − x t ′ β ) 2 2 h t ) f\left(y_{t} \mid x_{t}, \alpha_{i}, \beta\right)=\frac{1}{\sqrt{2 \pi h_{t}}} \exp \left(-\frac{\left(y_{t}-x_{t}^{\prime} \beta\right)^{2}}{2 h_{t}}\right) f(ytxt,αi,β)=2πht 1exp(2ht(ytxtβ)2)
另外
h t = α 0 + α 1 ( y t − 1 − x t − 1 ′ β ) 2 + α 2 ( y t − 2 − x t − 2 ′ β ) 2 + … + α q ( y t − q − x t − q ′ β ) 2 h_{t}=\alpha_{0}+\alpha_{1}\left(y_{t-1}-x_{t-1}^{\prime} \beta\right)^{2}+\alpha_{2}\left(y_{t-2}-x_{t-2}^{\prime} \beta\right)^{2}+\ldots+\alpha_{q}\left(y_{t-q}-x_{t-q}^{\prime} \beta\right)^{2} ht=α0+α1(yt1xt1β)2+α2(yt2xt2β)2++αq(ytqxtqβ)2
将参数 β \beta β α = ( α 0 α 1 α 2 … α q ) ′ \alpha=\left(\begin{array}{lllll} \alpha_{0} & \alpha_{1} & \alpha_{2} & \ldots & \alpha_{q} \end{array}\right)^{\prime} α=(α0α1α2αq)记作 γ = ( β α ) ′ \gamma = (\beta\quad \alpha)' γ=(βα),考虑
{ y t = x t ′ β + u t u t = h t v t h t = α 0 + α 1 u t − 1 2 + α 2 u t − 2 2 + … + α q u t − q 2 \left\{\begin{array}{l} y_{t}=x_{t}^{\prime} \beta+u_{t} \\ u_{t}=\sqrt{h_{t}} v_{t} \\ h_{t}=\alpha_{0}+\alpha_{1} u_{t-1}^{2}+\alpha_{2} u_{t-2}^{2}+\ldots+\alpha_{q} u_{t-q}^{2} \end{array}\right. yt=xtβ+utut=ht vtht=α0+α1ut12+α2ut22++αqutq2
的极大似然函数为
log ⁡ L ( γ ) = ∑ t = 1 T log ⁡ f ( y t ∣ x t , γ ) = − T 2 log ⁡ ( 2 π ) − 1 2 ∑ t = 1 T log ⁡ ( h t ) − 1 2 ∑ t = 1 T ( y t − x t ′ β ) 2 h t \begin{aligned} \log L(\gamma) &=\sum_{t=1}^{T} \log f\left(y_{t} \mid x_{t}, \gamma\right) \\ &=-\frac{T}{2} \log (2 \pi)-\frac{1}{2} \sum_{t=1}^{T} \log \left(h_{t}\right)-\frac{1}{2} \sum_{t=1}^{T} \frac{\left(y_{t}-x_{t}^{\prime} \beta\right)^{2}}{h_{t}} \end{aligned} logL(γ)=t=1Tlogf(ytxt,γ)=2Tlog(2π)21t=1Tlog(ht)21t=1Tht(ytxtβ)2
接下来寻找 γ = γ ^ \gamma = \hat \gamma γ=γ^时,使得 l o g L ( γ ) logL(\gamma) logL(γ)值最大,

下面是求解步骤:
∂ log ⁡ L ( γ ) ∂ γ = − 1 2 ∑ t = 1 T ∂ log ⁡ h t ∂ γ − 1 2 ∑ t = 1 T [ 1 h t ∂ ( y t − x t ′ β ) 2 ∂ γ − ( y t − x t ′ β ) 2 h t 2 ∂ h t ∂ γ ] = 1 2 ∑ t = 1 T ( − 1 h t ∂ h t ∂ γ − 1 h t ∂ ( y t − x t ′ β ) 2 ∂ γ + u t 2 h t 2 ∂ h t ∂ γ ) = 1 2 ∑ t = 1 T ( u t 2 h t 2 ∂ h t ∂ γ − 1 h t ∂ h t ∂ γ ∂ γ − 1 h t ∂ ( y t − x t ′ β ) 2 ∂ γ ) = 1 2 ∑ t = 1 T ( u t 2 − h t h t 2 ∂ h t ∂ γ − 1 h t ∂ ( y t − x t ′ β ) 2 ∂ γ ) \begin{aligned} \frac{\partial \log L(\gamma)}{\partial \gamma} &=-\frac{1}{2} \sum_{t=1}^{T} \frac{\partial \log h_{t}}{\partial \gamma}-\frac{1}{2} \sum_{t=1}^{T}\left[\frac{1}{h_{t}} \frac{\partial\left(y_{t}-\boldsymbol{x}_{t}^{\prime} \boldsymbol{\beta}\right)^{2}}{\partial \gamma}-\frac{\left(y_{t}-\boldsymbol{x}_{t}^{\prime} \boldsymbol{\beta}\right)^{2}}{h_{t}^{2}} \frac{\partial h_{t}}{\partial \boldsymbol{\gamma}}\right] \\ &=\frac{1}{2} \sum_{t=1}^{T}\left(-\frac{1}{h_{t}} \frac{\partial h_{t}}{\partial \boldsymbol{\gamma}}-\frac{1}{h_{t}} \frac{\partial\left(y_{t}-\boldsymbol{x}_{t}^{\prime} \boldsymbol{\beta}\right)^{2}}{\partial \gamma}+\frac{u_{t}^{2}}{h_{t}^{2}} \frac{\partial h_{t}}{\partial \gamma}\right) \\ &=\frac{1}{2} \sum_{t=1}^{T} {\left(\frac{u_{t}^{2}}{h_{t}^{2}} \frac{\partial h_{t}}{\partial \gamma}-\frac{1}{h_{t}} \frac{\partial h_{t}}{\partial \gamma}\right.}{\partial \boldsymbol{\gamma}}-\frac{1}{h_{t}} \frac{\partial\left(y_{t}-\boldsymbol{x}_{t}^{\prime} \boldsymbol{\beta}\right)^{2}}{\partial \gamma}) \\ &=\frac{1}{2} \sum_{t=1}^{T}\left(\frac{u_{t}^{2}-h_{t}}{h_{t}^{2}} \frac{\partial h_{t}}{\partial \gamma}-\frac{1}{h_{t}} \frac{\partial\left(y_{t}-\boldsymbol{x}_{t}^{\prime} \boldsymbol{\beta}\right)^{2}}{\partial \gamma}\right) \end{aligned} γlogL(γ)=21t=1Tγloght21t=1T[ht1γ(ytxtβ)2ht2(ytxtβ)2γht]=21t=1T(ht1γhtht1γ(ytxtβ)2+ht2ut2γht)=21t=1T(ht2ut2γhtht1γhtγht1γ(ytxtβ)2)=21t=1T(ht2ut2htγhtht1γ(ytxtβ)2)
整理得
∂ log ⁡ L ( γ ) ∂ γ = 1 2 ∑ t = 1 T { u t 2 − h t h t 2 [ − 2 ∑ j = 1 q α j x t − j u t − j 1 u t − 1 2 ⋮ u t − q 2 ] − 1 h t [ − 2 x t u t 0 ] } \frac{\partial \log L(\gamma)}{\partial \gamma}=\frac{1}{2} \sum_{t=1}^{T}\left\{\frac{u_{t}^{2}-h_{t}}{h_{t}^{2}}\left[\begin{array}{c} -2 \sum_{j=1}^{q} \alpha_{j} \mathbf{x}_{t-j} u_{t-j} \\ 1 \\ u_{t-1}^{2} \\ \vdots \\ u_{t-q}^{2} \end{array}\right]-\frac{1}{h_{t}}\left[\begin{array}{c} -2 x_{t} u_{t} \\ 0 \end{array}\right]\right\} γlogL(γ)=21t=1T ht2ut2ht 2j=1qαjxtjutj1ut12utq2 ht1[2xtut0]
在上式为0的条件下求出 γ ^ \hat \gamma γ^即为极大似然估计量,具有一致性。


1.4 ARCH模型检验

  • 先检验均值方程的变量是否平稳(单位根检验系列)

  • ARCH过程存在性检验(LM检验,F检验,LR检验,Q检验)

LM检验

建立原假设:
H 0 : α i = 0 ( i = 1 , 2 … q ) H 1 : α i 不全为 0 \begin{aligned} &H_0:\alpha_i = 0(i =1,2\dots q)\\ &H_1:\alpha_i不全为0 \end{aligned} H0:αi=0(i=1,2q)H1:αi不全为0
估计均值方程 y t = x t ′ β + ε t y_{t}=\boldsymbol{x}_{t}^{\prime} \boldsymbol{\beta}+\varepsilon_{t} yt=xtβ+εt,得到估计值 ε ^ t \hat \varepsilon_t ε^t,并计算 ε ^ t 2 \hat {\varepsilon}_t^2 ε^t2,构造辅助回归
ε ^ t 2 = α 0 + α 1 ε ^ t − 1 2 + α 2 ε ^ t − 2 2 + … + α q ε ^ t − q 2 + v t \hat{\varepsilon}_{t}^{2}=\alpha_{0}+\alpha_{1} \hat{\varepsilon}_{t-1}^{2}+\alpha_{2} \hat{\varepsilon}_{t-2}^{2}+\ldots+\alpha_{q} \hat{\varepsilon}_{t-q}^{2}+v_{t} ε^t2=α0+α1ε^t12+α2ε^t22++αqε^tq2+vt
得到可决系数 R 2 R^2 R2,构造LM统计量 L M = T R 2 ∼ χ 2 ( q ) LM = TR^2 \sim \chi^2(q) LM=TR2χ2(q)。若 L M > χ α 2 ( q ) LM>\chi^2_\alpha(q) LM>χα2(q),则拒绝原假设,存在ARCH效应。

F检验

建立原假设:
H 0 : α i = 0 ( i = 1 , 2 … q ) H 1 : α i 不全为 0 \begin{aligned} &H_0:\alpha_i = 0(i =1,2\dots q)\\ &H_1:\alpha_i不全为0 \end{aligned} H0:αi=0(i=1,2q)H1:αi不全为0
估计均值方程 y t = x t ′ β + ε t y_{t}=\boldsymbol{x}_{t}^{\prime} \boldsymbol{\beta}+\varepsilon_{t} yt=xtβ+εt,得到估计值 ε ^ t \hat \varepsilon_t ε^t,并计算 ε ^ t 2 \hat {\varepsilon}_t^2 ε^t2,构造两个辅助回归
ε ^ t 2 = α 0 + v t ε ^ t 2 = α 0 + α 1 ε ^ t − 1 2 + α 2 ε ^ t − 2 2 + … + α q ε ^ t − q 2 + v t \begin{array}{l} \hat{\varepsilon}_{t}^{2}=\alpha_{0}+v_{t} \\ \hat{\varepsilon}_{t}^{2}=\alpha_{0}+\alpha_{1} \hat{\varepsilon}_{t-1}^{2}+\alpha_{2} \hat{\varepsilon}_{t-2}^{2}+\ldots+\alpha_{q} \hat{\varepsilon}_{t-q}^{2}+v_{t} \end{array} ε^t2=α0+vtε^t2=α0+α1ε^t12+α2ε^t22++αqε^tq2+vt
第一个辅助回归为约束回归,即 H 0 H_0 H0,第二个为无约束回归即 H 1 H_1 H1,利用有约束的检验方法构建F统计量
F = ( SSE ⁡ r − S S E u ) / q SSE ⁡ u / ( T − q − 1 ) ∼ F ( q , T − q − 1 ) \boldsymbol{F}=\frac{\left(\operatorname{SSE}_{r}-S S E_{u}\right) / q}{\operatorname{SSE}_{u} /(T-q-1)} \sim \boldsymbol{F}(\boldsymbol{q}, \boldsymbol{T}-\boldsymbol{q} \mathbf{- 1}) F=SSEu/(Tq1)(SSErSSEu)/qF(q,Tq1)
F F F< F α ( q , T − q − 1 ) F_{\alpha}(q, T-q-1) Fα(q,Tq1)则不拒绝原假设,反之拒绝。

LR检验

与F检验类似,先构建有约束与无约束的辅助回归,分别利用极大似然估计法得到有约束与无约束的极大似然函数最大值 L o g L r LogL_r LogLr L o g L u LogL_u LogLu,构建LR统计量
L R = − 2 ( log ⁡ L r − log ⁡ L u ) ∼ χ 2 ( m ) L R=-2\left(\log L_{r}-\log L_{u}\right) \sim \chi^{2}(m) LR=2(logLrlogLu)χ2(m)
L R < χ 2 α ( m ) L R<\chi^{2}{ }_{\alpha}(m) LR<χ2α(m)不拒绝原假设,反之拒绝。

Q检验:对均值方程的残差平方(即扰动项方差)进行自相关检验,若存在自相关意味着存在ARCH。


2 GARCH模型

在ARCH模型中由于ARCH方程是关于扰动项平方的分布滞后模型,为避免扰动项平方滞后过多(样本容量损失),可以引入扰动项方差的滞后项。例如
σ t 2 = α 0 + α 1 ε t − 1 2 + λ 1 σ t − 1 2 (4) \sigma_{t}^{2}=\alpha_{0}+\alpha_{1} \varepsilon_{t-1}^{2}+\lambda_{1} \sigma_{t-1}^{2}\tag{4} σt2=α0+α1εt12+λ1σt12(4)
此模型称为广义自回归条件异方差模型,记作GARCH(1,1)。其中 ε t − 1 \varepsilon_{t-1} εt1为ARCH项, σ t − 1 2 \sigma_{t-1}^2 σt12为GARCH项。 σ t 2 \sigma_t^2 σt2 ε t \varepsilon_t εt的条件方差。显然
α 0 > 0 , α 1 ≥ 0 , λ 1 ≥ 0 \alpha_{0}>0, \alpha_{1} \geq 0, \lambda_{1} \geq 0 α0>0,α10,λ10
λ 1 ∈ [ 0 , 1 ) \lambda_1 \in[0,1) λ1[0,1)则方程(4)可以改写为
( 1 − λ 1 L ) σ t 2 = α 0 + α 1 u t − 1 2 σ t 2 = α 0 1 − λ 1 + α 1 1 − λ 1 L u t − 1 2 = α 0 1 − λ 1 + ( α 1 + α 1 λ 1 L + α 1 λ 1 2 L 2 + α 1 λ 1 3 L 3 + … ) u t − 1 2 \begin{array}{l} \left(1-\lambda_{1} L\right) \sigma_{t}^{2}=\alpha_{0}+\alpha_{1} u_{t-1}^{2} \\ \\ \sigma_{t}^{2}=\frac{\alpha_{0}}{1-\lambda_{1}}+\frac{\alpha_{1}}{1-\lambda_{1} L} u_{t-1}^{2} \\ \\ \quad=\frac{\alpha_{0}}{1-\lambda_{1}}+\left(\alpha_{1}+\alpha_{1} \lambda_{1} L+\alpha_{1} \lambda_{1}^{2} L^{2}+\alpha_{1} \lambda_{1}^{3} L^{3}+\ldots\right) u_{t-1}^{2} \end{array} (1λ1L)σt2=α0+α1ut12σt2=1λ1α0+1λ1Lα1ut12=1λ1α0+(α1+α1λ1L+α1λ12L2+α1λ13L3+)ut12
其中 L L L为滞后算子。由此看出,GARCH模型是ARCH模型的无限阶滞后。


2.1 GARCH定义

GARCH模型包含 q q q个ARCH项与 p p p个GARCH项,即GARCH(p,q),
σ t 2 = α 0 + λ 1 σ t − 1 2 + … + λ p σ t − p 2 + α 1 u t − 1 2 + … + α q u t − q 2 \sigma_{t}^{2}=\alpha_{0}+\lambda_{1} \sigma_{t-1}^{2}+\ldots+\lambda_{p} \sigma_{t-p}^{2}+\alpha_{1} u_{t-1}^{2}+\ldots+\alpha_{q} u_{t-q}^{2} σt2=α0+λ1σt12++λpσtp2+α1ut12++αqutq2
其中参数
{ α 0 > 0 α i ≥ 0 , i = 1 , 2 , … q λ i ≥ 0 , i = 1 , 2 , … p 0 ≤ ( ∑ i = 1 q α i + ∑ i = 1 p λ i ) < 1 \left\{\begin{array}{l} \alpha_{0}>0 \\ \alpha_{i} \geq 0, i=1,2, \ldots q \\ \lambda_{i} \geq 0, i=1,2, \ldots p \\ 0 \leq\left(\sum_{i=1}^{q} \alpha_{i}+\sum_{i=1}^{p} \lambda_{i}\right)<1 \end{array}\right. α0>0αi0,i=1,2,qλi0,i=1,2,p0(i=1qαi+i=1pλi)<1


2.2 GARCH性质

GARCH模型的均值方程的被解释变量的条件期望与方差
{ E { y t ∣ x t } = x t β Var ⁡ { y t ∣ x t } = σ t 2 \left\{\begin{array}{l} \mathbf{E}\left\{y_{t} \mid x_{t}\right\}=x_{t} \beta \\ \operatorname{Var}\left\{y_{t} \mid x_{t}\right\}=\sigma_{t}^{2} \end{array}\right. {E{ytxt}=xtβVar{ytxt}=σt2
当然,也可以对GARCH方程求期望,并令 t → ∞ t\to \infty t得到
σ 2 = α 0 1 − ∑ i = 1 q α i − ∑ i = 1 p λ i \sigma^{2}=\frac{\alpha_{0}}{1-\sum_{i=1}^{q} \alpha_{i}-\sum_{i=1}^{p} \lambda_{i}} σ2=1i=1qαii=1pλiα0
要保证 σ 2 \sigma^2 σ2非负,需要保证 0 ≤ ( ∑ i = 1 q α i + ∑ i = 1 p λ i ) < 1 0 \leq\left(\sum_{i=1}^{q} \alpha_{i}+\sum_{i=1}^{p} \lambda_{i}\right)<1 0(i=1qαi+i=1pλi)<1。在现实建模过程中。GARCH(1,1)与GARCH(2,1)足可以对自回归异方差进行描述。


3 I-GARCH模型

在GARCH模型中,
σ t 2 = α 0 + α 1 ε t − 1 2 + ⋯ + α q ε t − q 2 + β 1 σ t − 1 2 + ⋯ + β p σ t − p 2 \sigma_{t}^{2}=\alpha_{0}+\alpha_{1} \varepsilon_{t-1}^{2}+\cdots+\alpha_{q} \varepsilon_{t-q}^{2}+\beta_{1} \sigma_{t-1}^{2}+\cdots+\beta_{p} \sigma_{t-p}^{2} σt2=α0+α1εt12++αqεtq2+β1σt12++βpσtp2
可能在估计过程中并不能保证
∑ i = 1 q α i + ∑ i = 1 p β i < 1 \sum_{i=1}^{q} \alpha_{i}+\sum_{i=1}^{p} \beta_{i}<1 i=1qαi+i=1pβi<1
而是出现
∑ i = 1 q α i + ∑ i = 1 p β i > 1 \sum_{i=1}^{q} \alpha_{i}+\sum_{i=1}^{p} \beta_{i}>1 i=1qαi+i=1pβi>1
的情形。此时扰动项产生的冲击将是永久的。因此I-GARCH模型在GARCH模型的基础上加入限制条件
∑ i = 1 q α i + ∑ i = 1 p λ i = 1 \sum_{i=1}^{q} \alpha_{i}+\sum_{i=1}^{p} \lambda_{i} =1 i=1qαi+i=1pλi=1
以保证平稳性,此时将GARCH模型记作I-GARCH(p,q),
σ t 2 = α 0 + ∑ i = 1 p α i ϵ t − i 2 + ∑ i = 1 q β i σ t − i 2 \sigma_{t}^{2}=\alpha_{0}+\sum_{i=1}^{p} \alpha_{i} \epsilon_{t-i}^{2}+\sum_{i=1}^{q} \beta_{i} \sigma_{t-i}^{2} σt2=α0+i=1pαiϵti2+i=1qβiσti2
限制条件 ∑ i = 1 p α i + ∑ i = 1 q β i = 1 \sum_{i=1}^{p} \alpha_{i}+\sum_{i=1}^{q} \beta_{i}=1 i=1pαi+i=1qβi=1


4 M-ARCH模型

定义:将ARCH模型(包括扩展类)的均值方程引入方差作为解释变量,即
{ y t = x t ′ β + ϕ σ t 2 + ε t σ t 2 = α 0 + α 1 ε t − 1 2 + ⋯ + α p ε t − p 2 \left\{\begin{array}{l} \boldsymbol{y}_{t}=x_{t}^{\prime} \beta+\phi \sqrt{\sigma_{t}^{2}}+\varepsilon_{t}\\ \sigma_{t}^{2}=\alpha_{0}+\alpha_{1} \varepsilon_{t-1}^{2}+\cdots+\alpha_{p} \varepsilon_{t-p}^{2} \end{array}\right. {yt=xtβ+ϕσt2 +εtσt2=α0+α1εt12++αpεtp2
称为M-ARCH§。当然,也可将GARCH模型均值方程引入方差,得到M-GARCH(p,q),将IGARCH模型方差方程引入方差,得到M-IGARCH(p,q)模型


5 T-GARCH模型

T-GARCH模型又称门限GARCH模型,Glosten, Jagannathan and Runkle (1993)提出了非对称(asymmetric)的“门限GARCH”模型(Threshold GARCH,简记TARCH)。门限GARCH模型根据扰动项的正负在方差方程加入门槛变量,即
σ t 2 = α 0 + α 1 ε t − 1 2 + λ 1 ε t − 1 2 ⋅ 1 ( ε t − 1 > 0 ) ⏟ tarch  + β 1 σ t − 1 2 \sigma_{t}^{2}=\alpha_{0}+\alpha_{1} \varepsilon_{t-1}^{2}+\lambda_{1} \underbrace{\varepsilon_{t-1}^{2} \cdot 1\left(\varepsilon_{t-1}>0\right)}_{\text {tarch }}+\beta_{1} \sigma_{t-1}^{2} σt2=α0+α1εt12+λ1tarch  εt121(εt1>0)+β1σt12
其中 l ( ε t − 1 > 0 ) \mathbf{l}(\varepsilon_{t-1}>0) l(εt1>0)为示性函数,满足括号里的记作1,反之为0。 ε t − 1 > 0 \varepsilon_{t-1}>0 εt1>0表示利好消息, ε t − 1 < 0 \varepsilon_{t-1}<0 εt1<0为利差消息。显然利好与离差的对条件方差的影响是不对称的。

  • 利好消息时,扰动项的平方对条件方差的影响为 λ 1 + α 1 \lambda_1+\alpha_1 λ1+α1
  • 利差消息时,扰动项的平方对条件方差的影响为 α 1 \alpha_1 α1
  • λ 1 = 0 \lambda_1 =0 λ1=0时,即不存在门槛效应,此时利好与利差的影响是对称的
  • λ 1 ≠ 0 \lambda_1 \ne 0 λ1=0时,条件方差对冲击的反应是非对称的,称这种现象为“杠杆作用”

更一般的TGARCH模型可以记作
σ t 2 = α 0 + ∑ i = 1 q α i ε t − i 2 + λ 1 ε t − 1 2 ⋅ 1 ( ε t − 1 > 0 ) + ∑ j = 1 p β j σ t − j 2 \sigma_{t}^{2}=\alpha_{0}+\sum_{i=1}^{q} \alpha_{i} \varepsilon_{t-i}^{2}+\lambda_1 \varepsilon_{t-1}^2 \cdot 1\left(\varepsilon_{t-1}>0\right) +\sum_{j=1}^{p} \beta_{j} \sigma_{t-j}^{2} σt2=α0+i=1qαiεti2+λ1εt121(εt1>0)+j=1pβjσtj2


6 E-GARCH模型

标准的GARCH模型存在参数限制,因此可以考虑对数形式的条件方差方程,即E-GARCH模型:
ln ⁡ σ t 2 = α 0 + α 1 ( ε t − 1 / σ t − 1 ) ⏟ earch  + λ 1 ∣ ε t − 1 / σ t − 1 ∣ ⏟ earch  − a + β 1 ln ⁡ σ t − 1 2 ⏟ egarch  \ln \sigma_{t}^{2}=\alpha_{0}+\alpha_{1} \underbrace{\left(\varepsilon_{t-1} / \sigma_{t-1}\right)}_{\text {earch }}+\lambda_{1} \underbrace{|\varepsilon_{t-1} / \sigma_{t-1}|}_{\text {earch }_{-} a}+\beta_{1} \underbrace{\ln \sigma_{t-1}^{2}}_{\text {egarch }} lnσt2=α0+α1earch  (εt1/σt1)+λ1earch a εt1/σt1+β1egarch  lnσt12
其中 ( ε t − 1 / σ t − 1 ) \left(\varepsilon_{t-1} / \sigma_{t-1}\right) (εt1/σt1)表示 ε t − 1 \varepsilon_{t-1} εt1的标准化,表示非对称效应。 ∣ ε t − 1 / σ t − 1 ∣ |\varepsilon_{t-1} / \sigma_{t-1}| εt1/σt1表示对称效应。 l n σ t − 1 2 ln \sigma^2_{t-1} lnσt12为EGARCH项。无论 l n σ t − 1 2 ln \sigma^2_{t-1} lnσt12取何值,都有 σ t 2 = exp ⁡ ( ln ⁡ σ t 2 ) > 0 \sigma_{t}^{2}=\exp \left(\ln \sigma_{t}^{2}\right)>0 σt2=exp(lnσt2)>0,故称作“指数GARCH”模型


7 ABS-GARCH模型

为了保证方差为正,还可以引入绝对值,即
σ t 2 = α 0 + ∑ i = 1 q α i ∣ ε t − i ∣ + ∑ j = 1 p λ j σ 2 t − j \sigma_{t}^{2}=\alpha_{0}+\sum_{i=1}^{q} \alpha_{i}\left|\boldsymbol{\varepsilon}_{t-i}\right|+\sum_{j=1}^{p} \lambda_{j} \sigma^{2}{ }_{t-j} σt2=α0+i=1qαiεti+j=1pλjσ2tj
与GARCH模型比较,上述模型用 ∣ ε t − i ∣ |\varepsilon_{t-i}| εti代替了 ε t − i 2 \varepsilon_{t-i}^2 εti2,采用绝对值形式缩小了 ε t 2 \varepsilon_t^2 εt2的幅度。当然也可将ABS-GARCH模型写作
σ t = α 0 + ∑ i = 1 q α i ∣ ε t − i ∣ + ∑ j = 1 p λ j σ t − j \sigma_{t}=\alpha_{0}+\sum_{i=1}^{q} \alpha_{i}\left|\varepsilon_{t-i}\right|+\sum_{j=1}^{p} \lambda_{j} \sigma_{t-j} σt=α0+i=1qαiεti+j=1pλjσtj


8 P-GARCH模型

考虑冲击的非对称性,还可以用P-garch模型来刻画,即
σ t k = α 0 + ∑ j = 1 q β j σ t − j k + ∑ i = 1 p α i ( ∣ ε t − i ∣ − γ i ε t − i ) k \sigma_{t}^{k}=\alpha_{0}+\sum_{j=1}^{q} \beta_{j} \sigma_{t-j}^{k}+\sum_{i=1}^{p} \alpha_{i}\left(\left|\varepsilon_{t-i}\right|-\gamma_{i} \varepsilon_{t-i}\right)^{k} σtk=α0+j=1qβjσtjk+i=1pαi(εtiγiεti)k
其中 k > 0 k>0 k>0, ∣ γ i ∣ ≤ 1 ( i = 1 , 2 , … r ) |\gamma_i|\le1(i =1,2,\dots r) γi1(i=1,2,r)


9 ARMA-GARCH模型

设线性模型为
y t = x t ′ β + u t y_{t}=\boldsymbol{x}_{t}^{\prime} \boldsymbol{\beta}+u_{t} yt=xtβ+ut
其中扰动项服从ARMA(p,q)过程,即
u t = ∑ i = 1 p ρ i u t − i + ∑ j = 1 q θ j ε t − j + ε t u_{t}=\sum_{i=1}^{p} \rho_{i} u_{t-i}+\sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j}+\varepsilon_{t} ut=i=1pρiuti+j=1qθjεtj+εt
其中 ε \varepsilon ε为ARCH或GARCH模型的扰动项,代入方程
y t = x t ′ β + ∑ i = 1 p ρ i ( y t − i − x t − i ′ β ) + ∑ j = 1 q θ j ε t − j + ε t y_{t}=\boldsymbol{x}_{t}^{\prime} \boldsymbol{\beta}+\sum_{i=1}^{p} \rho_{i}\left(y_{t-i}-\boldsymbol{x}_{t-i}^{\prime} \boldsymbol{\beta}\right)+\sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j}+\varepsilon_{t} yt=xtβ+i=1pρi(ytixtiβ)+j=1qθjεtj+εt


10 其他GARCH模型

ARCH模型的扩展形式非常丰富(还有LM-GARCH,FI-GARCH,FIE-GARCH等),以均值方程的设定形式又分为线性与非线性类型。总之,ARCH模型及其扩展的选择应从研究目的来做出选择。


-END-

参考文献

陈强. 高级计量经济学及Stata应用[M].高等教育出版社,2014

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值