学习建议:
- 结合b站课程:【电机与拖动】
- 怕什么真理无穷,进一寸有一寸的精彩
1.3 磁路的基本定律
-
全电流定律:在磁路中,沿任一闭合路径,磁场强度的线积分等于与该闭合路径交链的电流的代数和: ∮ H d l = Σ I \oint H \mathrm{~d} l=\Sigma I ∮H dl=ΣI
-
磁路欧姆定律:磁通 Φ = F R m \Phi=\frac{F}{R_{\mathrm{m}}} Φ=RmF
- 磁阻: R m \boldsymbol{R}_{\mathrm{m}} Rm,磁通势: F \boldsymbol{F} F
第七章 直流电机
7.1 直流电机的用途和种类
- 直流电机用途
- 直流电动机的主要用途是 实现直流电力拖动
- 发电机 的主要用途是用作直流电源直流
- 按励磁方式的不同分类——他励直流电机、并励直流电机、串励直流电机和复励直流电机
- 直流电机的基本结构:
- 定子(励磁):换向极、机座、主磁极、电刷转置
- 转子(电枢):换向器、电枢铁心、风扇、转轴、电枢绕组、轴承
7.4 直流电机的型号和额定值
- 型号:如 Z 2 - 51,产品代号:Z 系列直流电机
- 额定功率
P
N
P_{\mathrm{N}}
PN:输出机械功率的额定值
- P 1 P_{\mathrm{1}} P1:输入功率(电功率)
- P 2 P_{\mathrm{2}} P2:输出功率(机械功率)
- 额定电压 U N U_{\mathrm{N}} UN:输入电压的额定值
- 额定电流 I N I_{\mathrm{N}} IN:输入电流的额定值
- 额定转速 n N n_{\mathrm{N}} nN:转子的转速(r/min)
- 额定功率 η N \eta_{\mathrm{N}} ηN = P 2 P 1 \frac{P_2}{P_1} P1P2= P N U N I ˉ N \frac{P_N}{U_N \bar{I}_N} UNIˉNPN
四个分类和电枢反应
- 直流电动机按励磁方式分类
7.5 直流电机的电枢反应
- 电枢反应:电枢磁通势对主极磁场的影响
- 影响:
- 总磁场被扭歪了:几何中心线与物理中心线分开了,增加换向困难
- 一半磁极的磁通增加,一半磁极的磁通减少,磁路饱和时,总磁通减少—弱磁效应
7.8 直流电机的功率和转矩
- 功率
-
输入功率 P 1 = U I P_1=U I P1=UI
-
输出功率 P 2 = T 2 Ω P_2 = T_2 Ω P2=T2Ω
-
功率 η N \eta_{\mathrm {N}} ηN = P 2 P 1 × 100 % \frac{P_2}{P_1}\times 100 \% P1P2×100%
-
功率流程图:电源—定子(励磁)—气隙—转子(电枢)—轴
-
总损耗 P al = P 1 − P 2 \mathrm {P}_{\text {al}} = P_1 - P_2 Pal=P1−P2
-
总铜损耗 P Cu = P Cuf + P Cua = I f 2 R f + I f 2 R a \mathrm{P}_{\text {Cu}} = \mathrm{P}_{\text {Cuf}} + \mathrm{P}_{\text {Cua}} = I^2_f R_f +I^2_f R_a PCu=PCuf+PCua=If2Rf+If2Ra
-
铁损耗 P F e P_{Fe} PFe
- 直流电机的定子环节没有铁损耗,铁损耗发生在转子环节
-
机械损耗 P m e P_{me} Pme
-
附加损耗 P a d P_{ad} Pad
- 转矩
- 机械角速度 Ω = 2 π 60 n \Omega = \frac{2 \pi}{60}n Ω=602πn
- 负载转矩
T
L
T_L
TL
第八章 直流电机的电力拖动
7.6 直流电动机的电磁转矩和电动势
- 他励直流电动机
- 电压平衡方程式
- 励磁电路: U f = R f I f U_f = R_f I_f Uf=RfIf
- 电枢电路: U a = E + R a I a U_a = E + R_a I_a Ua=E+RaIa
- 电动势
- 大小: E = C E Φ n ( V ) E = C_E \Phi n (V) E=CEΦn(V)
- 电动势常数 C E = 4 p N 60 C_E = {4pN \over 60} CE=604pN
- 电机极对数 p
- 每相绕组匝数 N
- 方向: Φ \Phi Φ和n共同决定
- 电磁转矩(
T
或
T
e
T 或 T_e
T或Te)
- 转矩平衡方程式 T 2 = T e − T 0 T_2 =T_e -T_0 T2=Te−T0
- 大小 T = C T Φ I a ( N . m ) T = C_T \Phi I_a (N.m) T=CTΦIa(N.m)
- 转矩常数 C T = 2 p N π C_T = {2pN \over \pi} CT=π2pN
- 方向:由 Φ \Phi Φ和 I a I_a Ia共同决定
- 性质 :电动机 T 和 n 方向相同,为拖动转矩
C T C E = 60 2 π = 9.55 { C T = 2 p N π C E = 4 p N 60 C T = 9.55 C E { C_T \over C_E } = {60 \over 2\pi} = 9.55 \begin{cases} C_T = { 2pN \over \pi} \\ C_E = { 4pN \over 60} \end{cases}\\ \\ C_T = 9.55 C_E CECT=2π60=9.55{CT=π2pNCE=604pNCT=9.55CE
7.7 直流电动机的运行分析
他励电动机
-
电压平衡方程式
- 励磁电路 $U_f = R_f I_f $
- 电枢电路 U a = E + R a I a U_a = E + R_aI_a Ua=E+RaIa
- E = C E Φ n E = C_E\Phi n E=CEΦn T = C T Φ I a T = C_T \Phi I_a T=CTΦIa
- 机械特性方程 n = E C E Φ = U a − R a I a C E Φ = U a C E Φ − R a C E C T Φ 2 T n= {E \over C_E \Phi} = {U_a - R_aI_a \over C_E \Phi} = {U_a \over C_E \Phi} - {R_a \over C_EC_T \Phi^2}T n=CEΦE=CEΦUa−RaIa=CEΦUa−CECTΦ2RaT
8.1 他励直流电动机的机械特性
-
固有特性
-
n = U a C E Φ − R a C E C T Φ 2 T n= {U_a \over C_E \Phi} - {R_a \over C_EC_T \Phi^2}T n=CEΦUa−CECTΦ2RaT
-
机械特性 n = f ( T ) = n 0 − γ T n = f(T)= n_0 - \gamma T n=f(T)=n0−γT
-
斜率 γ = ∣ d n d T ∣ = R a C E C T Φ 2 \gamma = | {dn \over dT}| = {R_a \over C_EC_T \Phi^2} γ=∣dTdn∣=CECTΦ2Ra
-
机械特性的硬度 α = 1 γ \alpha = {1 \over \gamma} α=γ1
-
n 0 n_0 n0 : 理想空载工作点
-
N N N 点: 额定状态
-
M M M点: 临界状态
-
-
人为特性
- 增加电枢电路电阻时的人为特性
- n = U N C E Φ N − R a + R r C E C T Φ 2 T n = {U_N \over C_E \Phi_N }- {R_a + R_r \over C_E C_T \Phi^2}T n=CEΦNUN−CECTΦ2Ra+RrT
- ( R a + R r ) ↑ → γ ↑ → α ↓ (R_a + R_r) \uparrow \rightarrow \gamma \uparrow \rightarrow \alpha \downarrow (Ra+Rr)↑→γ↑→α↓ 即机械特性变软
- 降低电枢电压时的人为特性
- n = U a ↓ C E Φ N − R a C E C T Φ 2 T n = {U_a \downarrow \over C_E \Phi_N }- {R_a \over C_E C_T \Phi^2}T n=CEΦNUa↓−CECTΦ2RaT
- U a ↓ → n 0 ↓ U_a \downarrow \rightarrow n_0 \downarrow Ua↓→n0↓ 但 γ 、 α \gamma、\alpha γ、α 不变 → \rightarrow → 机械特性的硬度不变
- 减小励磁电流时的人为特性
- I f ↓ → Φ ↓ → n 0 ↑ → γ ↑ 、 α ↓ I_f \downarrow \rightarrow \Phi \downarrow \rightarrow n_0 \uparrow \rightarrow \gamma \uparrow 、\alpha\downarrow If↓→Φ↓→n0↑→γ↑、α↓ 即机械特性变软
8.2 他励直流电动机的起动
-
起动性能
-
起动瞬间: n = 0 → E = 0 → U a = R a I a n=0 \rightarrow E=0 \rightarrow U_a = R_aI_a n=0→E=0→Ua=RaIa
-
起动电流 I S T = U a R a = ( 10 20 ) I N > I a m a x I_{ST} = {U_a \over R_a}= (10~20)I_N > I_{amax} IST=RaUa=(10 20)IN>Iamax
-
起动转矩 T S T T_{ST} TST
-
- 降低电枢电压 U a U_a Ua起动——需要可调直流电源
- 增加电枢电阻 R a R_a Ra起动
4.2 电力拖动系统的负载特性
负载的机械特性 n = f ( T L ) n = f(T_L) n=f(TL)
- 转速和转矩的参考方向:
- T T T与 n 方向相同,为拖动转矩
- $ T_L$ 与n方向相反,为制动转矩
- 恒转矩负载特性
- 反抗性恒转矩负载
- 由摩檫力产生
- 当 n > 0 , T L > 0 n>0,T_L>0 n>0,TL>0
- 当 n < 0 , T L < 0 n<0,T_L<0 n<0,TL<0
- 位能性恒转矩负载
- 由重力作用产生的
- 当 n > 0 , T L > 0 n>0,T_L>0 n>0,TL>0
- 当 n < 0 , T L < 0 n<0,T_L<0 n<0,TL<0
- 如起重机的提升机构和矿井卷扬机等
-
恒功率负载特性
-
T L ∝ 1 n T_L \propto {1 \over n} TL∝n1
-
P = T Ω = T 2 π n 60 P=T \Omega = T{2\pi n \over 60} P=TΩ=T602πn T L n = 常数 T_Ln=常数 TLn=常数
-
如机床的主轴系统等
-
-
通风机负载类型
- T L ∝ n 2 T_L \propto n^2 TL∝n2
- 如通风机、水泵、油泵等
8.3 他励直流电动机的调速
-
n
=
U
a
C
E
Φ
−
R
a
C
E
C
T
Φ
2
T
n = {U_a \over C_E \Phi} - {R_a \over C_EC_T\Phi^2}T
n=CEΦUa−CECTΦ2RaT
-
增加电枢电路电阻时的人为特性
-
n = U N C E Φ N − R a + R r C E C T Φ 2 T n = {U_N \over C_E \Phi_N }- {R_a + R_r \over C_E C_T \Phi^2}T n=CEΦNUN−CECTΦ2Ra+RrT
-
( R a + R r ) ↑ → γ ↑ → α ↓ (R_a + R_r) \uparrow \rightarrow \gamma \uparrow \rightarrow \alpha \downarrow (Ra+Rr)↑→γ↑→α↓
-
-
改变电枢电压调速
- 调速方向:在 U N U_N UN(或 n N n_N nN)以下调节
- U a ↓ → n ↓ , U a ↑ → n ↑ U_a \downarrow\rightarrow n \downarrow, U_a \uparrow\rightarrow n \uparrow Ua↓→n↓,Ua↑→n↑
-
改变励磁电流调速$ \rightarrow$弱磁调速
- 调速方向:在
n
N
n_N
nN以上(
I
f
N
I_{fN}
IfN以下)调节
- 调速方向:在
n
N
n_N
nN以上(
I
f
N
I_{fN}
IfN以下)调节
8.4 他励直流电动机的制动
-
制动方法:机械制动、电气制动
-
目的:快速停车、匀速下放重物
-
分类:能耗制动、反接制动、回馈制动
-
能耗制动
-
R b R_b Rb: 制动电阻
-
U a = 0 → n = − R a + R b C E C T Φ 2 T U_a=0 \rightarrow n = -{R_a+R_b \over C_EC_T \Phi^2}T Ua=0→n=−CECTΦ2Ra+RbT
-
-
反接制动
-
迅速停机时的反接制动
- 电压反向的反接制动
- 电压反向的反接制动
-
下放重物时的反接制动
- 电动势反向的反接制动
- 结果:n反向
→
\rightarrow
→E反向
- 回馈制动
-
电车下坡时的回馈制动
-
下放重物时的回馈制动
8.5 他励电动机在四象限中运行状态
- 第一象限:正向电动机运行状态
- 第三象限:反向电动机运行状态
- 第二、四象限:发电机运行状态
第二章 变压器
- 三相电路
- U A B : 线电压, I A B : 线电流 U_{AB}:线电压,I_{AB}:线电流 UAB:线电压,IAB:线电流
- U A : 相电压, I A : 相电流 U_A:相电压,I_A:相电流 UA:相电压,IA:相电流
- 星型: U A B = 3 U A 、 I A B = I A U_{AB}=\sqrt3U_A、I_{AB}=I_A UAB=3UA、IAB=IA
- 三角形: U A B = U A 、 I A B = 3 I A U_{AB}=U_A、I_{AB}=\sqrt3I_A UAB=UA、IAB=3IA
2.1 变压器的用途和种类
- 主要用途:变换电压
- 变压器分类
- 按相数分类:单相变压器、三相变压器、多相变压器
- 按每组绕组的个数分类:双绕组变压器、三绕组变压器、多绕组变压器、自耦变压器等
- 按结构形式分类:心式变压器和壳式变压器
2.3 变压器的基本结构
-
铁心
- 铁心材料:由硅钢片叠成或非晶合金制成
- 铁心制作:有叠片式和卷制式两种
-
绕组
- 用绝缘圆导线或扁导线绕成
- 有同心式或交叠式两种
- 注意:同心式下,高压绕组在外,低压绕组在里
2.4 变压器的型号和额定值
-
型号 (如: S G − 1000 / 10 S \quad G-1000/10 SG−1000/10)
- S :三相
- G :空气自冷式(干式)
- 1000 :高压绕组额定电压(kV)
- 10 :额定容量(kV.A)
-
额定电压 U 1 N / U 2 N U_{1N}/U_{2N} U1N/U2N:指空载电压的额定值
- 如铭牌上标注:电压10000/230V
- 三相变压器是指线电压
-
额定电流 I 1 N / I 2 N I_{1N}/I_{2N} I1N/I2N:指满载(额定)电流值,即长期工作所允许的最大电流
- 三相变压器是指线电流
-
额定功率(额定容量) S N S_N SN
- 指视在功率的额定值
- 单相变压器: S N = U 2 N I 2 N = U 1 N I 1 N S_N = U_{2N}I_{2N}=U_{1N}I_{1N} SN=U2NI2N=U1NI1N
- 三相变压器: S N = 3 U 2 N I 2 N = 3 U 1 N I 1 N = 3 U p h I p h S_N = \sqrt3 U_{2N}I_{2N}=\sqrt3U_{1N}I_{1N}=3U_{ph}I_{ph} SN=3U2NI2N=3U1NI1N=3UphIph
- U N 、 I N : 线电压、线电流; U p h 、 I p h : 相电压、相电流 U_N、I_N:线电压、线电流;U_{ph}、I_{ph}:相电压、相电流 UN、IN:线电压、线电流;Uph、Iph:相电压、相电流
- 常用表示方法: U L 、 I L : 线电压线电流; U P 、 I P : 相电压相电流 U_L、I_L:线电压线电流;U_P、I_P:相电压相电流 UL、IL:线电压线电流;UP、IP:相电压相电流
- P : 有功功率 ( W ) 、 Q : 无功功率 ( v a r ) 、 S : 视在功率 ( V ⋅ A ) , P 2 + Q 2 = S 2 P:有功功率(W)、Q:无功功率(var)、S:视在功率(V\cdot A),P^2+Q^2=S^2 P:有功功率(W)、Q:无功功率(var)、S:视在功率(V⋅A),P2+Q2=S2
- ∠ S P = θ , 有功功率: P = S c o s θ , 无功功率: Q = S s i n θ \angle SP=\theta ,有功功率:P=Scos\theta ,无功功率:Q=Ssin\theta ∠SP=θ,有功功率:P=Scosθ,无功功率:Q=Ssinθ
-
额定频率 f N 50 H z ( 工频 ) f_N \quad 50Hz(工频) fN50Hz(工频)
2.2 变压器的工作原理
- 单相变压器
-
一次侧电路
- Z 1 : Z_1: Z1:一次绕组漏阻抗; R 1 : R_1: R1:一次绕组电阻; X 1 : X_1: X1:一次绕组漏电抗
- Z 1 = R 1 + j X 1 Z_1 = R_1 +jX_1 Z1=R1+jX1
- E 1 ˙ = − j 4.44 N 1 f Φ ˙ m \dot{E_1}=-j4.44N_1f\dot{\Phi}_m E1˙=−j4.44N1fΦ˙m
- N 1 : 绕组匝数; f : 变压器频率; Φ : 主磁通 N_1:绕组匝数;f:变压器频率;\Phi:主磁通 N1:绕组匝数;f:变压器频率;Φ:主磁通
- U 1 ˙ = − E 1 ˙ + Z 1 I 1 ˙ = − E 1 ˙ + ( R 1 + j X 1 ) I 1 ˙ \dot{U_1}=-\dot{E_1}+Z_1\dot{I_1}=-\dot{E_1}+(R_1 +jX_1)\dot{I_1} U1˙=−E1˙+Z1I1˙=−E1˙+(R1+jX1)I1˙
- 忽略 Z 1 Z_1 Z1,则 U 1 ˙ ≈ − E 1 ˙ \dot{U_1}\approx -\dot{E_1} U1˙≈−E1˙
-
二次侧电路
- Z 2 : Z_2: Z2:二次绕组漏阻抗; R 2 : R_2: R2:二次绕组电阻; X 2 : X_2: X2:二次绕组漏电抗
- Z 2 = R 2 + j X 2 Z_2 = R_2 +jX_2 Z2=R2+jX2
- E 2 ˙ = − j 4.44 N 2 f Φ ˙ m \dot{E_2}=-j4.44N_2f\dot{\Phi}_m E2˙=−j4.44N2fΦ˙m
- N 2 : 绕组匝数; f : 变压器频率; Φ : 主磁通 N_2:绕组匝数;f:变压器频率;\Phi:主磁通 N2:绕组匝数;f:变压器频率;Φ:主磁通
- U 2 ˙ = E 2 ˙ − Z 2 I 2 ˙ = E 2 ˙ − ( R 1 + j X 2 ) I 2 ˙ \dot{U_2}=\dot{E_2}-Z_2\dot{I_2}=\dot{E_2}-(R_1 +jX_2)\dot{I_2} U2˙=E2˙−Z2I2˙=E2˙−(R1+jX2)I2˙
- 忽略 Z 2 Z_2 Z2,则 U 2 ˙ ≈ E 2 ˙ \dot{U_2}\approx \dot{E_2} U2˙≈E2˙
-
一、二次绕组的电动势之比称为电压比(变比)
- k = E 1 E 2 = N 1 N 2 ≈ U 1 U 2 k= {E_1 \over E_2}={N_1 \over N_2} \approx{U_1 \over U_2} k=E2E1=N2N1≈U2U1
- 电流变换
- 磁通势平衡方程: F ˙ 1 m + F ˙ 2 m = F ˙ 0 m → N 1 I 1 ˙ + N 2 I 2 ˙ = N 1 I 0 ˙ \dot{F}_{1m}+\dot{F}_{2m}=\dot{F}_{0m} \rightarrow N_1\dot{I_1}+N_2\dot{I_2}=N_1\dot{I_0} F˙1m+F˙2m=F˙0m→N1I1˙+N2I2˙=N1I0˙
- I 0 : I_0: I0:等效励磁电流
- 当 I 2 = I 2 N , I 1 = I 1 N ( 满载 ) , I 0 ≈ 0 I_2=I_{2N},I_1=I_{1N}(满载),I_0 \approx 0 I2=I2N,I1=I1N(满载),I0≈0,即 N 1 I 1 ˙ + N 1 I 2 ˙ = 0 → I 1 ˙ = − N 2 N 1 I 2 ˙ N_1\dot{I_1}+N_1\dot{I_2}=0 \rightarrow \dot{I_1}=- {N_2 \over N_1}\dot{I_2} N1I1˙+N1I2˙=0→I1˙=−N1N2I2˙ → I 1 I 2 = N 2 N 1 = 1 k , I 1 ˙ 与 I 2 ˙ \rightarrow {I_1 \over I_2}={N_2 \over N_1}={1 \over k},\dot{I_1}与\dot{I_2} →I2I1=N1N2=k1,I1˙与I2˙相位相反
- 阻抗变换
-
∣
Z
e
∣
=
k
2
∣
Z
L
∣
|Z_e|=k^2|Z_L|
∣Ze∣=k2∣ZL∣
2.5 变压器的等效电路
- 等效电路
-
将匝数为 N 2 N_2 N2的实际二次绕组用匝数为 N 1 N_1 N1的等效二次绕组来代替,并保持磁通势和功率不变
-
折算前后二次绕组的磁通势保持不变,故 N 1 I 2 ‘ = N 2 I 2 N_1 I_2^`=N_2I_2 N1I2‘=N2I2
- I 2 ‘ = I 2 k I_2^`={I_2 \over k} I2‘=kI2
-
折算前后二次绕组输出的视在功率应保持不变,故 U 2 ‘ I 2 ‘ = U 2 I 2 U_2^`I_2^`=U_2I_2 U2‘I2‘=U2I2
- E 2 ‘ = k E 2 U 2 ‘ = k U 2 E_2^`=kE_2 \quad U_2^`=kU_2 E2‘=kE2U2‘=kU2
-
折算前后二次绕组本身消耗的有功功率和无功功率都要保持不变, P = R 2 ‘ I ‘ 2 2 = R 2 I 2 2 Q = X 2 ‘ I ‘ 2 2 = X 2 I 2 2 P=R_2^`{I^`}_2^2=R_2I_2^2 \quad Q=X_2^`{I^`}_2^2=X_2I_2^2 P=R2‘I‘22=R2I22Q=X2‘I‘22=X2I22
-
R
2
‘
=
k
2
R
2
X
2
‘
=
k
2
X
2
Z
L
‘
=
k
2
Z
L
R_2^`=k^2R_2 \quad X_2^`=k^2X_2 \quad Z_L^`=k^2Z_L
R2‘=k2R2X2‘=k2X2ZL‘=k2ZL
-
R
2
‘
=
k
2
R
2
X
2
‘
=
k
2
X
2
Z
L
‘
=
k
2
Z
L
R_2^`=k^2R_2 \quad X_2^`=k^2X_2 \quad Z_L^`=k^2Z_L
R2‘=k2R2X2‘=k2X2ZL‘=k2ZL
-
N 1 I 1 ˙ + N 2 I 2 ˙ = N 1 I 0 ˙ → N 1 I 1 ˙ + N 2 I 2 ˙ ‘ = N 1 N_1\dot{I_1}+N_2\dot{I_2}=N_1\dot{I_0}\rightarrow N_1\dot{I_1}+N_2\dot{I_2}^`=N_1 N1I1˙+N2I2˙=N1I0˙→N1I1˙+N2I2˙‘=N1
-
I
1
˙
+
I
2
˙
‘
=
I
0
˙
\dot{I_1}+\dot{I_2}^`=\dot{I_0}
I1˙+I2˙‘=I0˙
-
I
1
˙
+
I
2
˙
‘
=
I
0
˙
\dot{I_1}+\dot{I_2}^`=\dot{I_0}
I1˙+I2˙‘=I0˙
-
当 I 2 = I 2 N , I 1 = I 1 N ( 满载 ) , I 0 ≈ 0 I_2=I_{2N},I_1=I_{1N}(满载),I_0 \approx 0 I2=I2N,I1=I1N(满载),I0≈0
- 短路电阻 R S = R 1 + R 2 ‘ R_S=R_1+R_2^` RS=R1+R2‘
- 短路电抗 X S = X 1 + X 2 ‘ X_S=X_1+X_2^` XS=X1+X2‘
- 短路阻抗
Z
S
=
R
S
+
j
X
S
Z_S=R_S+jX_S
ZS=RS+jXS
2.6 变压器的参数测定
- 空载试验
- 试验在低压侧进行
- 瓦特表(W)测量有功功率,无法侧无功功率
- 测得数据: U 1 , I 0 , P 0 , U 2 U_1,I_0,P_0,U_2 U1,I0,P0,U2
- 求得数值:
- 铁损耗: P F e ≈ P 0 P_{Fe}\approx P_0 PFe≈P0
- 励磁阻抗模: ∣ Z 0 ∣ = U 1 I 0 |Z_0|={U_1 \over I_0} ∣Z0∣=I0U1
- 励磁电阻: R 0 = P 0 I 0 2 R_0 = {P_0 \over I_0^2} R0=I02P0
- 励磁电抗: X 0 = ∣ Z 0 ∣ 2 − R 0 2 X_0 = \sqrt{|Z_0|^2-R_0^2} X0=∣Z0∣2−R02
- 电压比: k = U 2 U 1 k={U_2 \over U_1} k=U1U2
- 若要将
∣
Z
0
∣
,
R
0
,
X
0
|Z_0|,R_0,X_0
∣Z0∣,R0,X0折算至高压侧,则折算至高压侧的参数=
k
2
×
k^2 \times
k2×折算至低压侧的参数
- 短路实验
-
试验在高压侧进行
-
测得数据: U S , I S , P S U_S,I_S,P_S US,IS,PS
-
求得数值:
- 铜损耗: P C u = P S P_{Cu}=P_S PCu=PS
- 短路阻抗模: ∣ Z S ∣ = U S I 1 |Z_S|={U_S \over I_1} ∣ZS∣=I1US
- 短路电阻: R S = P S I 1 2 R_S = {P_S \over I_1^2} RS=I12PS
- 短路电抗: X S = ∣ Z S ∣ 2 − R S 2 X_S= \sqrt{|Z_S|^2-R_S^2} XS=∣ZS∣2−RS2
- 阻抗电压: U S U_S US
-
温度折算:折算至75°C时的 R S R_S RS值
- 铜线: R S 75 = 234.5 + 75 234.5 + θ R S θ R_{S75}={234.5+75 \over 234.5+\theta}R_{S\theta} RS75=234.5+θ234.5+75RSθ
- 铝线: R S 75 = 228 + 75 228 + θ R S θ R_{S75}={228+75 \over 228+\theta}R_{S\theta} RS75=228+θ228+75RSθ
- 绕组电抗与温度无关: X S 75 = X S θ X_{S75}=X_{S\theta} XS75=XSθ
- 75°C时的短路阻抗模:
∣
Z
S
75
∣
=
R
S
75
2
+
X
S
75
2
|Z_{S75}|=\sqrt{R_{S75}^2+X_{S75}^2}
∣ZS75∣=RS752+XS752
第三章 异步电机的基本理论
- 异步(交流)电机的用途
- 单相异步电动机:容量都比较小,通常同应用于家用电器和实验室中。
- 三相异步电动机:当前工农业生产中应用最广泛的电动机
- 异步电机的种类
- 按相位的不同——单相异步电机、三相异步电机等
- 按运动方式的不同——旋转异步电机、直线异步电机
- 按转子绕组结构的不同——笼型异步电机、绕线型异步电机
3.3 三相异步电动机的基本结构
- 定子:定子铁心、定子绕组、机座和端盖等
- 定子铁心
- z : z: z:定子槽数
- p : p: p:定子磁极对数
- m : m: m:相数(3)
- 定子绕组
- 对称三相正弦交流电通入对称三相绕组
- τ : \tau: τ:极距离 τ = z 2 p \quad \tau={z \over 2p} τ=2pz
- y : y: y:节距
- q : q: q:每级每相位槽数 q = z 2 p m \quad q={z \over 2pm} q=2pmz
- 当 y = τ y=\tau y=τ时,整距绕组;当 y < τ y<\tau y<τ,短距绕组
- 当 q = 1 q=1 q=1,集中绕组;单 q > 1 q>1 q>1,分布绕组
- 转子
-
笼型异步电动机的转子(对称多相)
- 笼型转子是对称多相绕组,转子槽数能被磁极对数整除时:每对磁极下的每一根导体构成一相: m 2 = Z 2 p m_2={Z_2 \over p} m2=pZ2
- 转子槽数不能被极对数整除时,每一根导条就构成一相: m 2 = z 2 m _2=z_2 m2=z2
- 每相等效绕组匝数:
N
2
=
1
2
N_2={1 \over 2}
N2=21(一根导条相当于半匝)
-
绕线型异步电动机的转子(对称三相),是星型(Y型)连接的
3.2 三相异步电动机的工作原理
- 三相对称的正弦交流电通入三相对称的定子绕组
- i 1 = I m s i n w t i_1=I_m sinwt i1=Imsinwt
- i 2 = I m s i n ( w t − 120 ° ) i_2=I_m sin(wt-120°) i2=Imsin(wt−120°)
-
i
3
=
I
m
s
i
n
(
w
t
+
120
°
)
i_3=I_msin(wt+120°)
i3=Imsin(wt+120°)
-
定子相电流在时间相位上的变化与合成磁场在空间相位上的变化是同步的
-
三相对称的正弦交流电通入三相对称绕组 → \rightarrow →同步旋转磁场
- 定子旋转磁场的方向:由三相正弦交流电的相序决定,改变相序能改变磁场的方向
- 定子旋转磁场的转速:同步转速 n 0 = 60 f 1 P n_0={60f_1 \over P} n0=P60f1, f 1 f_1 f1为交流电源的频率,P为交流电机定子的磁极对数
-
转子中的转矩的产生
-
三相异步电机(感应电机)
-
三相异步电动机产生电磁转矩的必要条件
- 能够产生同步旋转磁场
- 转子绕组切割磁感线(存在转速差)
- 转子绕组受到电磁力的作用(转子闭合成回路)
- 定子磁场同步转速: n 0 = 60 f 1 P n_0={60f_1 \over P} n0=P60f1
- 转子转速: n = ( 1 − s ) n 0 n=(1-s)n_0 n=(1−s)n0
- 转差率: s = n 0 − n n 0 s={n_0-n\over n_0} s=n0n0−n
3.4 三相异步电动机的型号和额定值
-
型号 Y 132 S − 6 : \quad Y132S-6\quad : Y132S−6:磁极数为6, p = 3 p=3 p=3
-
功率 3 k W \quad 3kW\quad 3kW轴上输出额定机械功率 P N P_N PN
-
频率 50 H z \quad 50Hz 50Hz
-
电压 380 V : \quad 380V\quad: 380V:线电压380V
-
电流 7.2 A : \quad 7.2A\quad: 7.2A:线电流7.2A
-
联结 Y : \quad Y\quad: Y:定子的连接方式
- 转子绕组的连接方式:笼型没有绕组,绕线型一定是星型连接
-
转速 960 r / m i n : \quad 960r/min\quad: 960r/min:转子的额定转速
-
功率因数 0.76 \quad 0.76\quad 0.76
- 功率因数: λ N ( 或 c o s φ N ) \lambda_N(或cos\varphi_N) λN(或cosφN)
- 效率: η N \eta_N ηN
- 输入的电功率额定值: P 1 N = 3 U N I N c o s φ N \quad P_{1N}=\sqrt{3} U_NI_Ncos\varphi_N P1N=3UNINcosφN
- 输出的机械功率额定值:
P
N
=
η
N
P
1
N
=
3
U
N
I
N
c
o
s
φ
N
η
N
P_N=\eta_NP_{1N}=\sqrt3U_NI_Ncos\varphi_N\eta_N
PN=ηNP1N=3UNINcosφNηN
3.5~3.7 三相异步电动机的运行分析
-
磁通势平衡方程式
- F 1 m + F 2 m = F 0 m F_{1m}+F_{2m}=F_{0m} F1m+F2m=F0m
-
脉振磁通势
- 单相电流通过单相绕组产生脉振磁通势和脉振磁场
-
旋转磁通势
-
对称三相电流通过对称三相绕组时的各项基波脉振磁动势
-
i 1 = I m s i n w t i_1=I_m sinwt i1=Imsinwt → F 1 = F 相 s i n w t s i n x \quad\quad \rightarrow \quad\quad\quad F_1=F_相sinwtsinx →F1=F相sinwtsinx
-
i 2 = I m s i n ( w t − 120 ° ) i_2=I_m sin(wt-120°) i2=Imsin(wt−120°) → F 2 = F 相 s i n ( w t − 120 ° ) s i n ( x − 120 ° ) \rightarrow F_2=F_相sin(wt-120°)sin(x-120°) →F2=F相sin(wt−120°)sin(x−120°)
-
i 3 = I m s i n ( w t + 120 ° ) i_3=I_msin(wt+120°) i3=Imsin(wt+120°) → F 3 = F 相 s i n ( w t + 120 ° ) s i n ( x − 120 ° ) \rightarrow F_3=F_相sin(wt+120°)sin(x-120°) →F3=F相sin(wt+120°)sin(x−120°)
-
→ F 合 = 3 2 F 相 c o s ( w t − x ) \rightarrow F_合={3 \over 2}F_相cos(wt-x)\quad →F合=23F相cos(wt−x)三相合成基波磁动势
-
- 电动势平衡方程式
-
定子电路的电动势平衡方程
-
U 1 ˙ = − E 1 ˙ + ( R 1 + j X 1 1 ) I 1 ˙ = − E 1 ˙ + Z 1 I 1 ˙ ( E 1 = j 4.44 k w 1 N 1 f 1 Φ m ) \dot{U_1}=-\dot{E_1}+(R_1+jX_11)\dot{I_1}=-\dot{E_1}+Z_1\dot{I_1}\quad (E_1=j4.44k_{w1}N_1f_1\Phi_m) U1˙=−E1˙+(R1+jX11)I1˙=−E1˙+Z1I1˙(E1=j4.44kw1N1f1Φm)
-
式中 k w 1 : 绕组系数(短距分布绕组) ; \quad k_{w1}:绕组系数(短距分布绕组); kw1:绕组系数(短距分布绕组); k w 1 N 1 : \quad k_{w1}N_1: kw1N1:定子绕组的有效匝数
-
定子频率 f 1 = p n 0 60 \quad f_1= {pn_0 \over 60}\quad f1=60pn0( n 0 = 60 f 1 p n_0={60f_1 \over p} n0=p60f1)
-
-
短距绕组和分布绕组可以减少谐波电动势和谐波磁场的影响;
- 谐波电动势和谐波磁场会使发电机电动势波形变差,供电质量 ↓ \downarrow ↓,产生寄生转矩,附加损耗 ↑ \uparrow ↑ 等等
-
转子电路的电动势平衡方程
-
0 = E ˙ 2 s − ( R 2 + j X 2 s ) I ˙ 2 s = E ˙ 2 s − Z 2 s I ˙ 2 s 0=\dot{E}_{2s}-(R_2+jX_{2s})\dot{I}_{2s}=\dot{E}_{2s}-Z_{2s}\dot{I}_{2s} 0=E˙2s−(R2+jX2s)I˙2s=E˙2s−Z2sI˙2s
-
转子绕组漏抗: X 2 s = 2 π f 2 L 2 X_{2s}=2\pi f_2L_2 X2s=2πf2L2
-
式中, f 2 : f_2\quad: f2:转子频率(存在转差下的频率,不等于电源频率)
-
转子绕组电动势: E 2 s = j 4.44 k w 2 N 2 f 2 Φ m E_{2s}=j4.44k_{w2}N_2f_2\Phi_m E2s=j4.44kw2N2f2Φm
-
式中, k w 2 N 2 : k_{w2}N_2\quad: kw2N2:转子绕组的有效匝数
-
折算$\downarrow $
-
转子频率 f 2 = p ( n 0 − n ) 60 = p n 0 60 n 0 − n n 0 = s f 1 \quad f_2={p(n_0-n)\over 60}={pn_0 \over 60}{n_0-n \over n_0}=sf_1 f2=60p(n0−n)=60pn0n0n0−n=sf1
-
X 2 s = 2 π f 2 L 2 = s 2 π f 1 L 2 = s X 2 X_{2s}=2\pi f_2L_2=s2\pi f_1L_2=sX_2\quad X2s=2πf2L2=s2πf1L2=sX2 X 2 X_2 X2为折算到静止时的转子漏电抗
-
E 2 s = j 4.44 k w 2 N 2 f 2 Φ m = s 4.44 k w 2 N 2 f 1 Φ m = s E 2 E_{2s}=j4.44k_{w2}N_2f_2\Phi_m=s4.44k_{w2}N_2f_1\Phi_m=sE_2\quad E2s=j4.44kw2N2f2Φm=s4.44kw2N2f1Φm=sE2 E 2 E_2 E2为折算到静止时的转子感应电动势
-
0 = E ˙ 2 s − ( R 2 + j X 2 s ) I ˙ 2 s = s E ˙ 2 − ( R 2 + j s X ˙ 2 ) I 2 s 0=\dot{E}_{2s}-(R_2+jX_{2s})\dot{I}_{2s}=s\dot{E}_{2}-(R_2+js\dot{X}_{2})I_{2s} 0=E˙2s−(R2+jX2s)I˙2s=sE˙2−(R2+jsX˙2)I2s
-
- 等效电路
-
绕组折算
- 用一个相数和有效匝数与定子绕组相同的转子绕组去等效代替实际的转子绕组。原则:保证磁通势和功率不变
- 电动势的折算: E 2 ‘ = E 1 = k e E 2 E_2^`=E_1=k_eE_2 E2‘=E1=keE2
- 电流的折算: I 2 ‘ = I 2 k i I_2^`={I_2 \over k_i} I2‘=kiI2
- 阻抗的折算: k Z = k e k i k_Z=k_ek_i \quad kZ=keki Z 2 ‘ = k Z Z 2 { R 2 ‘ = k Z R 2 X 2 ‘ = k Z X 2 Z_2^`=k_ZZ_2 \begin{cases} R_2^`=k_ZR_2 \\ X_2^`=k_ZX_2 \end{cases} Z2‘=kZZ2{R2‘=kZR2X2‘=kZX2
-
频率折算
-
0 = E ˙ 2 s − ( R 2 + j X 2 s ) I ˙ 2 s = s E ˙ 2 − ( R 2 + j s X ˙ 2 ) I 2 s → 0=\dot{E}_{2s}-(R_2+jX_{2s})\dot{I}_{2s}=s\dot{E}_{2}-(R_2+js\dot{X}_{2})I_{2s}\rightarrow 0=E˙2s−(R2+jX2s)I˙2s=sE˙2−(R2+jsX˙2)I2s→
-
I ˙ 2 s = s E ˙ 2 R 2 + j s X 2 = E ˙ 2 R 2 s + j X 2 = I ˙ 2 \dot{I}_{2s}={s\dot{E}_2\over R_2+jsX_2}={\dot{E}_2 \over {R_2 \over s}+jX_2}=\dot{I}_2 I˙2s=R2+jsX2sE˙2=sR2+jX2E˙2=I˙2
-
用一个静止的、电阻为 R 2 / s R_2/s R2/s的等效转子去代替电阻为 R 2 R_2 R2的实际旋转的转子
-
3.8 三相异步电动机的功率和转矩
- 功率平衡方程
-
总损耗: P a l = P 1 − P 2 = P F e + P C u + P m e + P a d P_{al}=P_1-P_2=P_{Fe}+P_{Cu}+P_{me}+P_{ad} Pal=P1−P2=PFe+PCu+Pme+Pad
-
输入电功率: P 1 = 3 U 1 相 I 1 相 c o s φ 1 = 3 U 1 L I 1 L c o s φ 1 P_1=3U_{1相}I_{1相}cos\varphi_1=\sqrt3U_{1L}I_{1L}cos\varphi_1 P1=3U1相I1相cosφ1=3U1LI1Lcosφ1
-
输出机械功率: P 2 = η P 1 P_2=\eta P_1 P2=ηP1
-
机械损耗: P m e P_{me} Pme
-
附加损耗: P a d P_{ad} Pad
-
-
铁损耗: P F e = 3 R 0 I 0 2 P_{Fe}=3R_0I_0^2 PFe=3R0I02
- 定转子侧均存在铁耗,数量大小与频率相关,( f 1 = f , f 2 = s F − 1 , s ∈ ( 0.02 , 0.08 ) f_1=f,f_2=sF-1,s\in(0.02,0.08) f1=f,f2=sF−1,s∈(0.02,0.08))所以转子铁耗忽略不计
-
铜损耗: P C u = P C u 1 + P C u 2 P_{Cu}=P_{Cu1}+P_{Cu2} PCu=PCu1+PCu2
- P C u 1 = 3 R 1 I 1 2 P_{Cu1}=3R_1I_1^2 PCu1=3R1I12
-
P
C
u
2
=
3
R
2
I
2
2
=
3
R
2
‘
I
2
′
2
P_{Cu2}=3R_2I_2^2=3R_2^`I_2^{'2}
PCu2=3R2I22=3R2‘I2′2
-
P e m : P C u 2 : P ∑ = 1 : s : 1 − s P_{em} : P_{Cu2}: P_{\sum}=1:s:1-s Pem:PCu2:P∑=1:s:1−s
- 三相异步电动机的转矩
-
P e P m P 2 P 0 → T T 2 T 0 P_e\quad P_m\quad P_2\quad P_0 \rightarrow T\quad T_2\quad T_0 PePmP2P0→TT2T0
-
电磁转矩 T T T
- T = P m Ω = 60 2 π P m n = 9.55 P m n T={P_m\over \Omega}=\frac{60}{2\pi}\frac{P_m}{n}=9.55\frac{P_m}{n} T=ΩPm=2π60nPm=9.55nPm
- T = P e Ω 0 = 60 2 π P e n 0 = 9.55 P e n 0 T=\frac{P_e}{\Omega_0}={60 \over 2\pi}{P_e \over n_0}=9.55{P_e \over n_0} T=Ω0Pe=2π60n0Pe=9.55n0Pe
-
空载转矩 T 0 T_0 T0
- T 0 = P 0 Ω = 60 2 π P 0 n = 9.55 P 0 n T_0={P_0 \over \Omega}={60 \over 2\pi}{P_0 \over n}=9.55{P_0\over n} T0=ΩP0=2π60nP0=9.55nP0
-
输出转矩 T 2 T_2 T2
-
T
2
=
P
2
Ω
=
60
2
π
P
2
n
=
9.55
P
2
n
T_2={P_2 \over \Omega}={60\over 2\pi}{P_2\over n}=9.55{P_2\over n}
T2=ΩP2=2π60nP2=9.55nP2
-
T
2
=
P
2
Ω
=
60
2
π
P
2
n
=
9.55
P
2
n
T_2={P_2 \over \Omega}={60\over 2\pi}{P_2\over n}=9.55{P_2\over n}
T2=ΩP2=2π60nP2=9.55nP2