基于相对论的麦克斯韦方程组数学推导

        电磁场的本质其实就是,电荷产生电场,而磁场只是电荷的移动效应,也可理解为是电场的移动效果。

        互联网上关于麦克斯韦方程组的推导大多数偏于实验和感性理解,对于读者来说,理解起来不是那么清晰明了,可能会存在一些误区,虽然网上也不乏对麦克斯韦方程组的理论推导,但是对于大多数爱好者来说,纯理论理解或许有些困难,尤其是一些复杂的概念和术语。这里详细介绍了一种简便的数学推导方法,相对而言容易理解,可供爱好者参考,然而若要清晰的掌握和理解,还需要一定的数学计算基础,接下来的推导会涉及洛伦兹变化、微分算符的计算公式、高斯公式以及斯托克斯公式等。 


★推导前的知识储备

1、洛伦兹变换

空间中存在参考系S和S',设某一动点在S参考系中的坐标为(x,y,z),在S'参考系中的坐标为(x',y',z'),S'参考系相对于S参考系以(v_{0},0,0)移动,规定其运动方向为正方向,\gamma为洛伦兹因子。

\left\{\begin{matrix} x=\gamma (x'+v_{0}t')& & \\ y=y'& & \\ z=z'& & \end{matrix}\right.\quad(1)\quad\quad \left\{\begin{matrix} x'=\gamma (x-v_{0}t)& & \\ y'=y& & \\ z'=z& & \end{matrix}\right.\quad(2)

由(1)式和(2)式联立可解得:

\left\{\begin{matrix} t=\frac{t'+x'v_{0}/c^{2}}{\sqrt{1-v_{0}^{^{2}}/c^{2}}}&&&&(3) \\ t'=\frac{t-xv_{0}/c^{2}}{\sqrt{1-v_{0}^{^{2}}/c^{2}}}&&&&(4) \end{matrix}\right.

x=ct,x'=ct'分别带入(1)和(2)式得:

\left\{\begin{matrix} ct=\gamma t'(c+v_{0}) & && (5)\\ ct'=\gamma t(c-v_{0}) & &&(6)\end{matrix}\right.

将(5)与(6)式相乘,化简得:

c^2=\gamma ^2(c^2-v_{0}^{2})\Rightarrow \gamma =\frac{1}{\sqrt{1-v_{0}^{2}/c^{2}}} \quad\quad(7)                                       对(1)、(2)、(3)和(4)式分别求微分得:

\left\{\begin{matrix} dx=\gamma (v_{x}'+v_{0})dt'& & \\ dy=v_{y}'dt'& & \\ dz=v_{z}'dt'& & \\ dt=\gamma (1+v'v_{0}/c^2)dt'& & \end{matrix}\right.\quad\quad(8) \quad\quad \left\{\begin{matrix} dx'=\gamma (v_{x}-v_{0})dt& & \\ dy'=v_{y}dt& & \\ dz'=v_{z}dt& & \\ dt'=\gamma (1-vv_{0}/c^2)dt& & \end{matrix}\right.\quad\quad(9)

对(8)、(9)式化简得:

\left\{\begin{matrix} v_{x}=\frac{v_{x}'+v_{0}}{1+v'v_{0}/c^2} & & \\ v_{y}=\frac{v_{y}'\sqrt{1-v_{0}^2/c^2}}{1+v'v_{0}/c^2}& & \\ v_{z}=\frac{v_{z}'\sqrt{1-v_{0}^2/c^2}}{1+v'v_{0}/c^2} & & \end{matrix}\right.\quad\quad(10)\quad\quad \left\{\begin{matrix} v_{x}'=\frac{v_{x}-v_{0}}{1-v'v_{0}/c^2} & & \\ v_{y}'=\frac{v_{y}\sqrt{1-v_{0}^2/c^2}}{1-v'v_{0}/c^2}& & \\ v_{z}'=\frac{v_{z}\sqrt{1-v_{0}^2/c^2}}{1-v'v_{0}/c^2} & & \end{matrix}\right.\quad\quad(11)

        洛伦兹变换的本质是基于爱因斯坦的两个基本假设提出来的,即光速不变和相对性原理。简单的说,爱因斯坦认为光速是宇宙最快的速度,没有任何有质量的物体能超过光速;而相对性原理就是,在任何惯性参考系中物理规律都一样,比如说,在S惯性参考系中受到一个力,同样在S'惯性参考系中也会受到相同的力,于是在两个相对参考系中,它们的洛伦兹因子是相同的。对于x=\gamma (x'+v_{0}t'),为什么要加上一个洛伦兹因子呢?如果不加洛伦兹因子,(5)、(6)就变成了这样,ct=(c+v_{0})t', ct'=(c-v_{0})t\Rightarrow c^2=c^2-v_{0}^2,显然不成立,所以需要加上一个洛伦兹因子参数使得变换成立。

        方程组(1)表示的是,S'参考系中的物体所运动的距离加上参考系S'本身移动的距离等于该物体相对于S参考系运动的距离,这也是我们高中所学习的绝对位移等于牵连位移加上相对位移的原理一样,此时参考系S'移动的矢量速度为(v_{0},0,0)。方程组(2)也是如此,相对于参考系S'而言,而它的参考S移动的矢量速度为(-v_{0},0,0)。后面的方程式也就是对前面的分别求导,从而求出它们所对应的运动速度,到这里,我们也就清楚了它们的物理意义。

        回归到洛伦兹变换本身,我们也就知道了这个变换其实就是提供了一种在相对参考系中距离、速度和加速度的变换关系。

2、微分算符相关计算公式

\left\{\begin{matrix} \triangledown(uv)=v\triangledown u+u\triangledown v& & \\ \triangledown\cdot(u\vec{A})=\triangledown u\cdot\vec{A}+u\triangledown\cdot\vec{A}& & \\ \triangledown\times (u\vec{A})=\triangledown u\times\vec{A}+u\triangledown\times\vec{A} & & \end{matrix}\right. \left\{\begin{matrix} \triangledown(\vec{A}\cdot\vec{B})=\vec{A}\times(\triangledown\times\vec{B})+\vec{B}\times(\triangledown\times\vec{A})+\vec{A}(\vec{B}\cdot\vec{\triangledown})+\vec{B}(\vec{A}\cdot\vec{\triangledown})& & \\ \triangledown\cdot(\vec{A}\times\vec{B})=\vec{B}\cdot(\triangledown\times\vec{A})-\vec{A}\cdot(\triangledown\times\vec{B})& & \\ \triangledown\times(\vec{A}\times\vec{B})=\vec{A}(\triangledown\cdot\vec{B})-\vec{B}(\triangledown\cdot\vec{A})+\vec{A}(\vec{B}\cdot\triangledown)-\vec{B}(\vec{A}\cdot\triangledown)& & \end{matrix}\right.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值