基于相对论的麦克斯韦方程组数学推导

        电磁场的本质其实就是,电荷产生电场,而磁场只是电荷的移动效应,也可理解为是电场的移动效果。

        互联网上关于麦克斯韦方程组的推导大多数偏于实验和感性理解,对于读者来说,理解起来不是那么清晰明了,可能会存在一些误区,虽然网上也不乏对麦克斯韦方程组的理论推导,但是对于大多数爱好者来说,纯理论理解或许有些困难,尤其是一些复杂的概念和术语。这里详细介绍了一种简便的数学推导方法,相对而言容易理解,可供爱好者参考,然而若要清晰的掌握和理解,还需要一定的数学计算基础,接下来的推导会涉及洛伦兹变化、微分算符的计算公式、高斯公式以及斯托克斯公式等。 


★推导前的知识储备

1、洛伦兹变换

空间中存在参考系S和S',设某一动点在S参考系中的坐标为(x,y,z),在S'参考系中的坐标为(x',y',z'),S'参考系相对于S参考系以(v_{0},0,0)移动,规定其运动方向为正方向,\gamma为洛伦兹因子。

\left\{\begin{matrix} x=\gamma (x'+v_{0}t')& & \\ y=y'& & \\ z=z'& & \end{matrix}\right.\quad(1)\quad\quad \left\{\begin{matrix} x'=\gamma (x-v_{0}t)& & \\ y'=y& & \\ z'=z& & \end{matrix}\right.\quad(2)

由(1)式和(2)式联立可解得:

\left\{\begin{matrix} t=\frac{t'+x'v_{0}/c^{2}}{\sqrt{1-v_{0}^{^{2}}/c^{2}}}&&&&(3) \\ t'=\frac{t-xv_{0}/c^{2}}{\sqrt{1-v_{0}^{^{2}}/c^{2}}}&&&&(4) \end{matrix}\right.

x=ct,x'=ct'分别带入(1)和(2)式得:

\left\{\begin{matrix} ct=\gamma t'(c+v_{0}) & && (5)\\ ct'=\gamma t(c-v_{0}) & &&(6)\end{matrix}\right.

将(5)与(6)式相乘,化简得:

c^2=\gamma ^2(c^2-v_{0}^{2})\Rightarrow \gamma =\frac{1}{\sqrt{1-v_{0}^{2}/c^{2}}} \quad\quad(7)                                       对(1)、(2)、(3)和(4)式分别求微分得:

\left\{\begin{matrix} dx=\gamma (v_{x}'+v_{0})dt'& & \\ dy=v_{y}'dt'& & \\ dz=v_{z}'dt'& & \\ dt=\gamma (1+v'v_{0}/c^2)dt'& & \end{matrix}\right.\quad\quad(8) \quad\quad \left\{\begin{matrix} dx'=\gamma (v_{x}-v_{0})dt& & \\ dy'=v_{y}dt& & \\ dz'=v_{z}dt& & \\ dt'=\gamma (1-vv_{0}/c^2)dt& & \end{matrix}\right.\quad\quad(9)

对(8)、(9)式化简得:

\left\{\begin{matrix} v_{x}=\frac{v_{x}'+v_{0}}{1+v'v_{0}/c^2} & & \\ v_{y}=\frac{v_{y}'\sqrt{1-v_{0}^2/c^2}}{1+v'v_{0}/c^2}& & \\ v_{z}=\frac{v_{z}'\sqrt{1-v_{0}^2/c^2}}{1+v'v_{0}/c^2} & & \end{matrix}\right.\quad\quad(10)\quad\quad \left\{\begin{matrix} v_{x}'=\frac{v_{x}-v_{0}}{1-v'v_{0}/c^2} & & \\ v_{y}'=\frac{v_{y}\sqrt{1-v_{0}^2/c^2}}{1-v'v_{0}/c^2}& & \\ v_{z}'=\frac{v_{z}\sqrt{1-v_{0}^2/c^2}}{1-v'v_{0}/c^2} & & \end{matrix}\right.\quad\quad(11)

        洛伦兹变换的本质是基于爱因斯坦的两个基本假设提出来的,即光速不变和相对性原理。简单的说,爱因斯坦认为光速是宇宙最快的速度,没有任何有质量的物体能超过光速;而相对性原理就是,在任何惯性参考系中物理规律都一样,比如说,在S惯性参考系中受到一个力,同样在S'惯性参考系中也会受到相同的力,于是在两个相对参考系中,它们的洛伦兹因子是相同的。对于x=\gamma (x'+v_{0}t'),为什么要加上一个洛伦兹因子呢?如果不加洛伦兹因子,(5)、(6)就变成了这样,ct=(c+v_{0})t', ct'=(c-v_{0})t\Rightarrow c^2=c^2-v_{0}^2,显然不成立,所以需要加上一个洛伦兹因子参数使得变换成立。

        方程组(1)表示的是,S'参考系中的物体所运动的距离加上参考系S'本身移动的距离等于该物体相对于S参考系运动的距离,这也是我们高中所学习的绝对位移等于牵连位移加上相对位移的原理一样,此时参考系S'移动的矢量速度为(v_{0},0,0)。方程组(2)也是如此,相对于参考系S'而言,而它的参考S移动的矢量速度为(-v_{0},0,0)。后面的方程式也就是对前面的分别求导,从而求出它们所对应的运动速度,到这里,我们也就清楚了它们的物理意义。

        回归到洛伦兹变换本身,我们也就知道了这个变换其实就是提供了一种在相对参考系中距离、速度和加速度的变换关系。

2、微分算符相关计算公式

\left\{\begin{matrix} \triangledown(uv)=v\triangledown u+u\triangledown v& & \\ \triangledown\cdot(u\vec{A})=\triangledown u\cdot\vec{A}+u\triangledown\cdot\vec{A}& & \\ \triangledown\times (u\vec{A})=\triangledown u\times\vec{A}+u\triangledown\times\vec{A} & & \end{matrix}\right. \left\{\begin{matrix} \triangledown(\vec{A}\cdot\vec{B})=\vec{A}\times(\triangledown\times\vec{B})+\vec{B}\times(\triangledown\times\vec{A})+\vec{A}(\vec{B}\cdot\vec{\triangledown})+\vec{B}(\vec{A}\cdot\vec{\triangledown})& & \\ \triangledown\cdot(\vec{A}\times\vec{B})=\vec{B}\cdot(\triangledown\times\vec{A})-\vec{A}\cdot(\triangledown\times\vec{B})& & \\ \triangledown\times(\vec{A}\times\vec{B})=\vec{A}(\triangledown\cdot\vec{B})-\vec{B}(\triangledown\cdot\vec{A})+\vec{A}(\vec{B}\cdot\triangledown)-\vec{B}(\vec{A}\cdot\triangledown)& & \end{matrix}\right.

\left\{\begin{matrix} \triangledown\cdot(\triangledown u)=\triangledown^2 u& & \\ \triangledown\cdot(\triangledown\times\vec{A})=0& & \\ \triangledown\times\triangledown u=0& & \\ \triangledown\times(\triangledown\times\vec{A})=\triangledown(\triangledown\cdot\vec{A})-\triangledown^2\vec{A}& & \end{matrix}\right.

 其中,\triangledown,u,\vec{A}分别表示微分算符,变量(x,y,z)的函数,空间向量。

       我们将微分算符定义向量形式, \triangledown=(\frac{\partial }{\partial x},\frac{\partial }{\partial y},\frac{\partial }{\partial z}),上述公式都是微分算符点乘和叉乘的计算结果,由此引出了几个概念。

梯度:\triangledown u=(\frac{\partial u}{\partial x},\frac{\partial u}{\partial y},\frac{\partial u}{\partial z})

散度:\triangledown\cdot\vec{A}=\triangledown\cdot(u,v,w)=(\frac{\partial }{\partial x},\frac{\partial }{\partial y},\frac{\partial }{\partial z})(u,v,w)=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}

(这就是向量点乘的结果)

旋度:\triangledown\times\vec{A}=(\frac{\partial }{\partial x},\frac{\partial }{\partial y},\frac{\partial }{\partial z})\times(u,v,w)=[\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z},-(\frac{\partial w}{\partial x}-\frac{\partial u}{\partial z}),\frac{\partial v}{\partial x}-\frac{\partial u }{\partial y}]

(旋度的展开用到了斯托克斯公式,后续讲到)

3、斯托克斯公式

格林公式:

\quad\oint_{L} \vec{F}d\vec{l}\\ =\oint_{L}(P,Q)d\vec{l}\\ =\int_{x_{1}}^{x_{2}}P(x,y_{1})dx+\int_{x_{2}}^{x_{1}}P(x,y_{2})dx+\int_{y_{1}}^{y_{2}}Q(x_{1},y)dy+\int_{y_{2}}^{y_{1}}Q(x_{2},y)dy\\ =\int_{x_{1}}^{x_{2}}P(x,y_{1})dx-\int_{x_{1}}^{x_{2}}P(x,y_{2})dx+\int_{y_{1}}^{y_{2}}Q(x_{1},y)dy-\int_{y_{1}}^{y_{2}}Q(x_{2},y)dy\\ =-\int_{x_{1}}^{x_{2}}\int_{y_{1}}^{y_{2}}\frac{\partial P}{\partial y}dxdy+\int_{x_{1}}^{x_{2}}\int_{y_{1}}^{y_{2}}\frac{\partial Q}{\partial x}dxdy\\ =\iint_{\Sigma}\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}dS

其中,L为曲线路径,其方向为逆时针方向,\Sigma为L所围成的平面,\vec{F}=(P,Q)

斯托克斯公式:

\quad\oint _{L}\vec{F}d\vec{l}\\ =\iint_{\Sigma}\begin{vmatrix} \vec{i}&\vec{j} &\vec{k} \\ \frac{\partial }{\partial x}&\frac{\partial }{\partial y}& \frac{\partial }{\partial z}\\ P &Q &R \end{vmatrix}d\vec{S}\\ =\iint_{\Sigma}(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z})dydz-(\frac{\partial w}{\partial x}-\frac{\partial u}{\partial z})dxdz+(\frac{\partial v}{\partial x}-\frac{\partial u }{\partial y})dxdy\\ =\iint_{\Sigma}\triangledown \times \vec{F} d\vec{S}

其中,L为曲线路径,其方向为逆时针方向,\Sigma为L所围成的任意曲面,\vec{F}=(P,Q,R)

        格林公式和斯托克斯公式都是将曲线积分转化为面积分,为什么这里先介绍格林公式,因为斯托克斯公式可以通过格林公式进行推导,这个不做详细介绍了,有兴趣可以自行推导一下。

4、高斯公式

\quad\oint _{\Sigma }\vec{F}d\vec{A}\\ =\iint_{\Sigma _{yz}} P(x_{2},y,z)-P(x_{1},y,z)dyz+\iint_{\Sigma _{xz}} Q(x,y_{2},z)-\\ Q(x,y_{1},z)dxz+\iint_{\Sigma _{xy}} R(x,y,z_{2})-R(x,y,z_{1})dxy \\ =\iint_{\Sigma _{yz}}\int_{x_{1}} ^{x_{2}} \frac{\partial P}{\partial x}dyzdx+\iint_{\Sigma _{xz}} \int_{y_{1}} ^{y_{2}}\frac{\partial Q}{\partial y}dxzdy+\iint_{\Sigma _{xy}} \int_{z_{1}} ^{z_{2}}\frac{\partial R}{\partial z}dxy dz \\=\iiint_{\Omega }\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial Y}+\frac{\partial R}{\partial Z}dV \\=\iiint_{\Omega }\triangledown\cdot\vec{F}dV

其中,\Sigma ,\Omega分别为空间曲面区域,空间区域,\vec{F}=(P,Q,R)

        高斯公式的本质就是先曲面积分转化面积分,然后再转化为体积积分,重点主要在于需将函数P,Q,R分别转化为关于x,y,z的一重积分,最后就可以整合为体积积分形式了。

5、库伦定律

\vec{F}=q\vec{E}=k\frac{Qq\vec{r}}{r^3}

其中,\vec{F},k,Q,q,\vec{r},\vec{E}分别为库仑力,库伦常数,源电荷,目标电荷,源电荷和目标电荷之间的距离,以及电场。

        库仑力是带电粒子之间的静电相互作用。在经典电磁学中,这种力由电场介导。而在量子电动力学中,这种静电相互作用可以理解为虚光子的交换过程。库仑力也是一种电场力,电场中的相互作用可以看做是光子在带电粒子和电场之间不断交换,从而产生电场力。

6、洛伦兹力公式

\vec{F}=q\vec{v}\times\vec{B}

其中,\vec{F},q,\vec{v},\vec{B},分别表示洛伦兹力,目标电荷,目标电荷运动速度,外在磁场。

        洛伦兹力也是一种磁场力,磁场中的相互作用可以理解为带电粒子与磁场源之间的虚光子交换,运动的带电粒子与磁场源交换虚光子,从而导致磁场力的产生。而磁场的产生本质就是源电荷的移动,也就是源电荷电场的变化。所以磁场是电场的相对论效应。

7、  目标电荷所受的磁场与电场的关系推导

空间中存在参考系S和S',\vec{E},\vec{E'},\vec{B},\vec{B'}分别为不同参考系S,S'中的电场和磁场,S'参考系相对于S参考系以\vec{v}=(v_{0},0,0)移动,规定其运动方向为正方向,\gamma为洛伦兹因子。

\left\{\begin{matrix} S:q\vec{E}=\gamma (q\vec{v}\times\vec{B'}+q\vec{E'} )& & \\ S':q\vec{E'}=\gamma (-q\vec{v}\times\vec{B}+q\vec{E} )& & \end{matrix}\right. \Rightarrow \left\{\begin{matrix} \vec{E}=\gamma (\vec{E'}+\vec{v}\times\vec{B'} )& &(12) \\ \vec{E'}=\gamma (\vec{E}-\vec{v}\times\vec{B} )& &(13) \end{matrix}\right.

由(12)式和(13)化简得:

\left\{\begin{matrix} E_{x}=\gamma E'_{x} & & \\ E_{y}=\gamma (E'_{y}-v_{0}B'_{z} )& & \\ E_{z}=\gamma (E'_{z}+v_{0}B'_{y} )& & \end{matrix}\right.(14)\quad\quad \left\{\begin{matrix} E'_{x}=\gamma (E_{x} )& & \\ E'_{y}=\gamma (E_{y}+v_{0}B_{z} )& & \\ E'_{z}=\gamma (E_{z}-v_{0}B_{y}) & & \end{matrix}\right.(15)\quad\quad

由(12)式和(13)可推导得:

\vec{v}\times\vec{B}=\gamma (\frac{v_{0}^2}{c^2}\vec{E'}+\vec{v}\times\vec{B'})\quad\quad(16)\quad\quad

继续化简得:

\left\{\begin{matrix} B_{x}=B'_{x} ,E'_{x}=0& & \\ B_{y}=\gamma (B'_{z}-\frac{v_{0}}{c^2}E'_{z}) & & \\ B_{z}=\gamma (B'_{y}+\frac{v_{0}}{c^2}E'_{y}) & & \end{matrix}\right.(17)\quad\quad

由于S'系中的静电场为零,即(B_{x},B_{y},B_{z})=0,由(14)式和(17)式可推知:

\vec{B}=\frac{1}{c^2}\vec{v}\times\vec{E}

u_{0}\varepsilon_{0}=1/c^2,其中u_{0},\varepsilon _{0}分别为磁导率常数,介电常数,于是得:

\vec{B}=u_{0}\varepsilon _{0}\vec{v}\times\vec{E}\quad\quad(18)

        这个推论在之后的证明中尤为重要,尤其是在法拉第感应定律和安培环路定律的证明中。


         设在S坐标系中,理想线圈的环形轨迹方程为L'(x,y,z),其轨迹构成的任意封闭曲面为\Sigma',其曲面构成的体积为\Omega',某一空间环形轨迹方程为L(X,Y,Z),其轨迹构成的任意封闭曲面为\Sigma,其曲面构成的体积为\Omega,目标电荷坐标为(X,Y,Z),某一元电荷坐标为(x,y,z),目标电荷所受的电场为\vec{E}=\frac{Q(\vec{R}-\vec{r})}{4\pi \varepsilon _{0}(\vec{R}-\vec{r})^3}= \frac{Q(X-x,Y-y,Z-z)}{4\pi \varepsilon _{0}(\sqrt{(X-x)^2+(Y-y)^2+(Z-z)^2})^3},元电荷在线圈中的移动速度为(v_{x},v_{y},v_{z})

一、高斯定律

源电荷在曲面内,即封闭曲面\Sigma包含封闭曲面\Sigma'

封闭曲面\Sigma内包含点电荷有q_{1},q_{2}\cdot \cdot \cdot \cdot q_{n},Q=\sum_{k=1}^{n}q_{k}

\oint_{\Sigma}\vec{E_{1}}d\vec{S}=\oint_{\Sigma}\vec{E_{1}}d\vec{S}=\oint_{\Sigma}\frac{q_{1}\vec{r}}{4\pi \varepsilon_{0} r^3}d\vec{S} =\oint_{\Sigma}\frac{q_{1}}{4\pi \varepsilon_{0} r^2}dS=\frac{q_{1}}{4\pi \varepsilon_{0} r^2}\oint_{\Sigma}dS=\frac{q_{1}}{\varepsilon_{0}}

n=k时,同理:

\oint_{\Sigma}\vec{E_{k}}d\vec{S}=\frac{q_{k}}{\varepsilon_{0}}

由叠加原理可知:

微分形式

\oint_{\Sigma}\vec{E}d\vec{S}= \oint_{\Sigma}\sum_{k=1}^{n}\vec{E_{k}}d\vec{S} =\frac{1}{\varepsilon_{0}}\sum_{k=1}^{n}q_{k} =\frac{Q}{\varepsilon _{0}}

积分形式

\oint_{\Sigma}\vec{E}d\vec{S}= \iiint_{\Omega }\triangledown \cdot \vec{E}dV=\frac{Q}{\varepsilon _{0}}=\iiint_{\Omega}\frac{\rho}{\varepsilon _{0}}dV知:

\triangledown \cdot \vec{E}=\frac{\rho}{\varepsilon _{0}}

       这是高斯定律, 该公式表明,电场穿过曲面的通量与介电常数和源电荷量量有关。

源电荷在曲面外,即封闭曲面\Sigma'包含封闭曲面\Sigma:

\oint_{\Sigma}\vec{E_{k}}d\vec{S}=0知:

\quad\oint_{\Sigma}\vec{E}d\vec{S}= \oint_{\Sigma}\sum_{k=1}^{n}\vec{E_{k}}d\vec{S} =\iiint \triangledown \cdot \vec{E}dV=0\Rightarrow \triangledown \cdot \vec{E}=0


二、高斯磁定律  

源电荷在曲面外,即封闭曲面\Sigma'包含封闭曲面\Sigma:

定义电势:\varphi =-\int\vec{E}d\vec{l}

\left\{\begin{matrix} \varphi =-\int\vec{E}d\vec{l}=-\int E_{x}dx+E_{y}dy+E_{z}dz& \\ \varphi=\int d\varphi =\int\frac{\partial \varphi }{\partial x}dx+\frac{\partial \varphi}{\partial y} dy+\frac{\partial \varphi }{\partial z}dz& \end{matrix}\right. \Rightarrow \vec{E}=-\triangledown\varphi \quad(20)

由空间中目标电荷所受的磁场\vec{B}=\oint_{L'}u_{0}\varepsilon _{0}d\vec{v}\times\vec{E},\triangledown\times\vec{v}=0,\vec{E}=-\triangledown \varphi可知:

\quad\triangledown\cdot\vec{B}\\=\oint_{L'}u_{0}\varepsilon _{0}d\triangledown\cdot(\vec{v}\times\vec{E})\\= \oint_{L'}u_{0}\varepsilon _{0}d[\vec{E}\cdot(\triangledown\times\vec{v})-\vec{v}\cdot(\triangledown\times\vec{E})]\\ \quad\quad= \oint_{L'}u_{0}\varepsilon _{0}d[\vec{E}\cdot(\triangledown\times\vec{v})+\vec{v}\cdot(\triangledown\times\triangledown\varphi)]\\ \quad\quad\\=0 

于是,就有:

积分形式

\quad\oint_{\Sigma}\vec{B}d\vec{S}= \iiint_{\Omega}\triangledown\cdot\vec{B}dV=0

微分形式

\triangledown\cdot\vec{B}=0


三、法拉第感应定律

源电荷在曲面外,即封闭曲面\Sigma'包含封闭曲面\Sigma

以参考系S'为绝对参考系,参考系S的移动速度为\vec{v},由空间中目标电荷所受的电场\vec{E}=\oint_{L'}d(\frac{1}{\gamma}\vec{E'}-\vec{v}\times\vec{B})可知:

 \quad\oint_{L}\vec{E}d\vec{l}\\ =\iint_{\Sigma }\triangledown \times\vec{E}d\vec{S} \\ =\iint_{\Sigma}[\triangledown\times\oint_{L'}d(\frac{1}{\gamma}\vec{E'}-\vec{v}\times\vec{B})]d\vec{S}\\ =-\iint_{\Sigma}\oint_{L'}d[\triangledown\times(\vec{v}\times\vec{B})]d\vec{S}\\ =-\iint_{\Sigma}\gamma\oint_{L'}d[\vec{v}(\triangledown\cdot\vec{B})-\vec{B}(\triangledown \cdot \vec{v})+(\vec{B}\cdot\triangledown)\vec{v}-(\vec{v}\cdot\triangledown)\vec{B}]d\vec{S}\\ = \iint_{\Sigma}\oint_{L'}d[(\vec{v}\cdot\triangledown)\vec{B}]d\vec{S} \\= \iint_{\Sigma}\oint_{L'}d(v_{x}\frac{\partial B_{x}}{\partial X}+v_{y}\frac{\partial B_{y}}{\partial Y}+v_{z}\frac{\partial B_{z}}{\partial Z})d\vec{S}

\vec{B}(X-x,Y-y,Z-z)=(B_{x},B_{y},B_{z})知:

\partial \vec{B}/\partial X=-\partial \vec{B}/\partial x,\quad \partial \vec{B}/\partial Y=-\partial \vec{B}/\partial y,\quad\partial \vec{B}/\partial Z=-\partial \vec{B}/\partial z

于是

\quad \iint_{\Sigma}\oint_{L'}d(v_{x}\frac{\partial B_{x}}{\partial X}+v_{y}\frac{\partial B_{y}}{\partial Y}+v_{z}\frac{\partial B_{z}}{\partial Z})d\vec{S} \\ =-\iint_{\Sigma}\oint_{L'}d(\frac{dx}{dt}\frac{\partial B_{x}}{\partial x}+\frac{dy}{dt}\frac{\partial B_{y}}{\partial y}+\frac{dz}{dt}\frac{\partial B_{z}}{\partial z})d\vec{S} \\=-\iint_{\Sigma}\oint_{L'}d[\frac{d\vec{B}}{dt}]d\vec{S}\\ =-\iint_{\Sigma}\frac{d\vec{B}}{dt}d\vec{S}

由于\vec{B}(X,Y,Z,t)不仅含有时间t,所以

微分形式

\quad\oint_{L}\vec{E}d\vec{l}=-\iint_{\Sigma}\frac{\partial \vec{B}}{\partial t}d\vec{S}

积分形式

\triangledown\times\vec{E}=-\frac{\partial \vec{B}}{\partial t}


四、安培环路定律

围绕某一元电荷(x,y,z)的曲线L'所形成的平面为\Omega ',其在该元电荷的的法线与线圈轨迹L在这点的法线相同。

\quad\oint_{L}\vec{B}d\vec{l}\\ =\iint_{\Sigma}\triangledown \times \vec{B}d\vec{S}\\ =\iint_{\Sigma}\triangledown\times\oint_{L'}u_{0}\varepsilon _{0}(\vec{v}\times\vec{E})d\vec{S} \\=u_{0}\varepsilon _{0}\iint_{\Sigma}\oint_{L'}\triangledown\times(\vec{v}\times\vec{E})d\vec{S}\\ =u_{0}\varepsilon_{0}\iint_{\Sigma}\oint_{L'}d[\vec{v}(\triangledown\cdot\vec{E})-\vec{E}(\triangledown\cdot\vec{v})+(\vec{E}\cdot\triangledown)\vec{v}-(\vec{v}\cdot\triangledown)\vec{E}]d\vec{S} \\=u_{0}\varepsilon_{0}\iint_{\Sigma}\oint_{L'}d[\vec{v}(\triangledown\cdot\vec{E})-(\vec{v}\cdot\triangledown)\vec{E}]d\vec{S}\\

\quad \iint_{\Sigma}\oint_{L'}d\vec[{v}(\triangledown\cdot\vec{E})]d\vec{S}\\ =\oint_{L'}d[\iint_{\Sigma}\vec{v}(\triangledown\cdot\vec{E})d\vec{S}] \\ =\oint_{L'}d[\iint_{\Sigma}v(\triangledown\cdot\vec{E})dS]\\ =\oint_{L'}d[v\iint_{\Sigma}\int _{l_{1}}^{l_{2}}(\triangledown\cdot\vec{E})dSdl]\\ =\oint_{L'}d[v\iiint_{\Omega}(\triangledown\cdot\vec{E})dV]\\ =\oint_{L'}d[v\frac{\rho}{\varepsilon_{0}}]\\=\frac{I}{\varepsilon _{0}}

\quad \iint_{\Sigma}\oint_{L'}d[(\vec{v}\cdot\triangledown)\vec{E}]d\vec{S}\\ =\iint_{\Sigma}\oint_{L'}d(v_{x}\frac{\partial E_{x}}{\partial x}+v_{y}\frac{\partial E_{y}}{\partial y}+v_{z}\frac{\partial E_{z}}{\partial z})d\vec{S}\\ =\iint_{\Sigma}\oint_{L'}d(\frac{dx}{dt}\frac{\partial E_{x}}{\partial x}+\frac{dy}{dt}\frac{\partial E_{y}}{\partial y}+\frac{dz}{dt}\frac{\partial E_{z}}{\partial z})d\vec{S} \\=\iint_{\Sigma}\oint_{L'}d(\frac{d\vec{E}}{dt})d\vec{S}

由于\vec{E}(X,Y,Z,t)不仅含有时间t,所以

\quad\iint_{\Sigma}\oint_{L'}d(\frac{d\vec{E}}{dt})d\vec{S}\\ =\iint_{\Sigma}\frac{\partial \vec{E}}{\partial t}d\vec{S}

于是

积分形式

\quad\oint_{L}\vec{B}d\vec{l} =u_{0}I+u_{0}\varepsilon_{0}\iint_{\Sigma}\frac{\partial E}{\partial t}d\vec{S}

微分形式

\triangledown\times\vec{B}=u_{0}\varepsilon_{0}[\vec{v}(\triangledown\cdot\vec{E})+\frac{\partial \vec{E}}{\partial t}] =u_{0}\varepsilon_{0}(J+\frac{\partial \vec{E}}{\partial t})


  • 19
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
麦克斯韦方程组是一组描述电磁场基本行为的方程,它们构成了经典电动力学的核心。在计算机程序中,我们通常不会直接编写“推导”代码,因为这些方程是理论物理学的基础,而不是算法。然而,我们可以模拟和可视化这些方程的结果,或者用数学库来实现相关的数学运算。 如果你想要了解如何用编程语言如Python中的SymPy或NumPy来表示和处理麦克斯韦方程,可以这样做: ```python import sympy as sp from sympy import I, symbols, Eq, solve # 定义符号变量 t, x, y, z, E, H = symbols('t x y z E H', real=True) c = sp.Symbol('c', positive=True) # 光速 # 定义真空常数 (ε0, μ0) epsilon_0, mu_0 = sp.symbols('epsilon_0 mu_0') # 假设E和H都是空间矢量,可以表示为x, y, z方向的分量 Ex, Ey, Ez = E Hx, Hy, Hz = H # 麦克斯韦方程组 # 高斯定律 (电场积分定理) gauss_law = Eq(sp.Integral(E.dot(sp.dV), (sp.S(0), x, sp.S(oo)), (y, sp.S(0), sp.S(oo)), (z, sp.S(0), sp.S(oo))) == sp.Integral(sp.Derivative(epsilon_0*E.z, y), (y, sp.S(0), sp.S(oo))) + sp.Integral(sp.Derivative(epsilon_0*E.y, z), (z, sp.S(0), sp.S(oo)))) # 高斯磁场定律 (磁感应强度积分定理) gauss_magnetic_law = Eq(sp.Integral(H.dot(sp.dA), (sp.S(0), x, sp.S(oo)), (y, sp.S(0), sp.S(oo)), (z, sp.S(0), sp.S(oo))) == 0) # 法拉第电磁感应定律 (电动势的环路定律) faraday_law = Eq(sp.Derivative(-epsilon_0 * E, t) - sp.c * sp.Cross(H, sp.dx), 0) # 阿尔文-麦克斯韦定律 (磁通密度的变化率) ampere_maxwell_law = Eq(sp.Derivative(H, t) + sp.c**-2 * sp.Cross(E, sp.dx), (mu_0/(epsilon_0*c**2)) * sp.dB) # 解这些方程会非常复杂,通常需要数值方法求解 # 这里仅展示了理论表达式,实际计算通常会使用数值积分和偏微分方程求解器 ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值