理解麦克斯韦方程组

麦克斯韦方程组

当前的电磁波理论是在麦克斯韦方程组的基础上建立起来的。麦克斯韦方程组不是麦克斯韦一个人的发明创造,而是麦克斯韦(1831-1879)在总结了安培(1775-1836)、高斯(1744-808)、法拉第(1791-1867)等人对电场、磁场及其相互关系研究成果的基础上,利用当时已经发展成熟的向量微积分理论,用非常优雅和简洁的四个公式将电磁场理论进行了描述,并成功地预言了电磁波的存在。

麦克斯韦方程组分为微分形式和积分形式两种,他们之间可通过斯托克斯定理和高斯散度定理相互转换.

电场的激励源由两种,

  1. 一个为电荷,由电荷产生的电场具有无旋性,即电场沿着闭合路径上的线积分为0;
  2. 另一个为变化的磁场,磁通量的变化率产生感生电动势,形成电场,该电场不具有无旋性;

磁场的激励源由两种:

  1. 传导电流,导体中流动的电荷产生磁场,由法拉第电磁感应定律确定;
  2. 位移电流,电介质中虽然没有流动的电荷,但电介质中变化的电位移 ∫ S ∂ D ∂ t ⋅ d S \int_S \frac{\partial \bm D}{\partial t}\cdotp d\bm S StDdS也能够产生磁场

积分形式的方程组:

积分形式的麦克斯韦方程组描述宏观的电磁波规律,4个方程如下:
∮ l H ⋅ d l = ∫ S ( ∂ D ∂ t + J ) ⋅ d S ∮ l E ⋅ d l = − ∫ S ∂ B ∂ t ⋅ d S ∮ S D ⋅ d S = q ∮ S B ⋅ d S = 0 \begin{align} \oint_l \bm H \cdotp d\bm l &= \int_S (\frac{\partial \bm D}{\partial t}+\bm J)\cdotp d\bm S\\ \oint_l \bm E \cdotp d\bm l &= -\int_S \frac{\partial \bm B}{\partial t}\cdotp d\bm S\\ \oint_S \bm D\cdotp d\bm S &= q\\ \oint_S \bm B \cdotp d\bm S &= 0 \end{align} lHdllEdlSDdSSBdS=S(tD+J)dS=StBdS=q=0

公式(1)

是安培环路定律,即磁场强度绕着任意闭合曲线的线积分等于位移电流密度和传导电流密度在该闭合曲线所张的任意曲面的面积分之和。

H \bm H H为电场强度; D \bm D D为电通密度,也称电位移; ∂ D ∂ t \frac{\partial \bm D}{\partial t} tD 为位移电流密度; J \bm J J为传导电流密度;

电生磁,即电流能够产生磁场,电流与由其产生的与其交链的磁场之间的关系由安培环路定律 I = H ⋅ l I=\bm H \cdotp \bm l I=Hl描述。不但导体中的传导电流能够产生磁场,电介质中的位移电流也能够产生磁场。增加位移电流是麦克斯韦在安培环路定律的扩展;

公式(2)

是法拉第电磁感应定律,公式左边是电场强度的环路积分 ∮ l E ⋅ d l \oint_l \bm E \cdotp d\bm l lEdl,即感生电动势 U U U;公式右边是磁通量的变化率 − ∫ S ∂ B ∂ t ⋅ d S -\int_S \frac{\partial \bm B}{\partial t}\cdotp d\bm S StBdS

B \bm B B是磁感应强度; B ⋅ d S \bm B\cdotp d\bm S BdS为磁通量;

电场能够由电荷产生,也能够由磁通量的变化产生;电荷产生电场是无旋场,即电场强度沿着任一闭合路径的积分为0;而磁通量产生的电场为有旋场,即电场强度沿着闭合路径的线积分为该闭合路径所张的曲面上的磁通量的变化率;

公式(3)

是高斯定律,即任一闭合曲面上的电通量等于该闭合曲面内所包含的自由电荷的总和。电荷是电场的激励源,由电荷产生的电场是有源无旋场。一个闭合曲面内所包含的自由电荷的总量等于曲面上的电通量密度 D \rm D D 在曲面上的积分,即总的电通量。

公式(4)

反映了磁场的无源性,即磁场通过任一闭合曲面的通量为0. 磁场与电场不同,电场是由电荷产生的,磁场是由电荷的运动(电流)产生的,不存在“磁荷”。磁力线为无头无尾的闭合曲线,磁力线进入某个闭合曲面后,一定会在该闭合曲面的某个位置出来。因此,磁感应强度在闭合曲面的面积分为0.

微分形式的方程组

微分形式的麦克斯韦方程组利用向量的散度、旋度以及标量的梯度描述电磁场的微观现象,4个方程为:

∇ × H = ∂ D ∂ t + J ∇ × E = − ∂ B ∂ t ∇ ⋅ D = ρ ∇ ⋅ B = 0 \begin{align} \nabla \times \bm H &= \frac{\partial \bm D}{\partial t}+\bm J\\ \nabla \times \bm E &= - \frac{\partial \bm B}{\partial t}\\ \nabla \cdotp \bm D &= \rho\\ \nabla \cdotp \bm B &= 0 \end{align} ×H×EDB=tD+J=tB=ρ=0

ρ \rho ρ为电荷体密度,麦克斯韦方程组的微分形式反映了空间中电磁场的微观特性.

斯托克斯定理与高斯散度定理

斯托克斯定理:

空间向量场 A \bm A A 在任一闭合曲线上的曲线 l \bm l l 积分等于该向量的旋度 ∇ × A \nabla\times\bm A ×A 在该闭合曲线所张的曲面 S \bm S S 上的曲面积分
∮ l A ⋅ d l = ∫ S ( ∇ × A ) ⋅ d S \begin{align} \oint_l \bm A \cdotp d\bm l &= \int_S (\nabla \times \bm A) \cdotp d \bm S\\ \end{align} lAdl=S(×A)dS

高斯散度定理:

空间向量场 A \bm A A 在任一闭合曲面上 S \bm S S 的曲面积分等于该向量场的散度 ∇ ⋅ A \nabla \cdotp \bm A A在该闭合曲面所包含的体积 V V V 内的积分
∮ V A ⋅ d S = ∫ S ( ∇ ⋅ A ) d V \begin{align} \oint_V \bm A \cdotp d\bm S&= \int_S (\nabla \cdotp \bm A) dV\\ \end{align} VAdS=S(A)dV

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JERRY. LIU

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值