Abstract
导出电磁波在均匀且各向同性介质中的波动方程。
Maxwell方程组
考虑无源的场,即空间没有自由电荷和自由电流分布
原方程变为
考虑电场矢量和电位移矢量的关系,磁场矢量和磁感应强度矢量的关系
其中,电导率和磁导率与传播的介质相关,对于均匀线性的介质可以认为是常数,而一般的介质则使用张量表示。将这对关系代入方程,得到电场矢量和磁感应矢量的方程组
对电场旋度的方程再求旋度,即
数学上有恒等式,又因为考虑无源场的传播问题,所以电场的散度为零,则
,代入上式后得到
考虑物理量都是性质非常优良的函数,认为电磁场的一阶偏导连续,因此数学上二阶混合偏导可以交换顺序。同时考虑非相对论的情况,即空间和时间是不耦合的。因此,总可以将时间和空间的偏导交换顺序,即
再将磁感应矢量的旋度方程代入,得到
不考虑磁导率和电导率随时间的变化情况,得到
变一下形
这就是常见的电矢量的波动方程。
同样,对于磁感应矢量的旋度方程再求旋度
利用恒等式和磁感应矢量的散度为零,并且视磁导率和电导率为常数,电场矢量是一阶偏导连续且非相对论的,因此
整理后