ADAS测试

adas的控制器属于域控制器(dcu),比ecu功能更复杂
零部件A-----(can/lin/以太网)------零部件B
adas系统属于自动驾驶中的一个阶段。

目前企业主要是在L2和L3
adas控制器结合传感器就实现了各种adas的功能

BSD

ACC

AEB

ADAS常用传感器

adas系统中使用到的传感器都有可能需要去做标定。有的传感器可以不用做标定。
传感器用来采集环境数据,包括:
1、位置
2、速度
3、高度

### ADAS 测试方法 ADAS测试体系涵盖了多种类型的测试,每种测试都有特定的目标和要求。为了确保系统的可靠性与安全性,在设计阶段就需要考虑全面的测试方案[^1]。 #### 功能验证测试 功能验证测试主要针对各个独立的功能模块展开,比如自适应巡航控制(ACC),自动紧急制动(AEB)等功能。通过模拟实际应用场景来检验各功能是否按照预期工作。 #### 性能评估测试 性能评估侧重于测量系统响应时间、精度等方面的表现。这通常涉及设定一系列标准场景并记录下被测对象在此期间的行为变化,从而得出定量化的评价指标。 #### 极限条件下的鲁棒性检测 极限条件下鲁棒性的考察是为了确认当外部环境超出正常范围时(如极端天气状况),车辆仍能够保持稳定运行而不发生危险事故。此类试验可能需要借助特殊场地或设施来进行。 ### 使用的工具和技术 对于上述提到的不同种类的测试活动而言,存在着相应配套使用的软硬件资源: - **仿真平台**:可以创建虚拟交通情景用于早期研发过程中的快速迭代优化; - **传感器校准装置**:保证摄像头、雷达等感知元件获取的信息准确性; - **数据分析软件**:像Orcas、CANalyser这样的应用程序可以帮助技术人员深入理解收集到的日志文件,并从中发现潜在缺陷所在之处[^3]。 另外值得注意的是,在整个测试流程里,高效的数据管理同样至关重要。一款专为满足这一需求而生的应用程序已经被推出市场——它允许使用者轻松地追踪诸如安全接管次数在内的众多关键事件的发生时刻及其详情描述,极大地简化了传统上依赖纸笔或者Excel表格所面临的复杂程度[^2]。 ```python import pandas as pd def analyze_adas_logs(log_file_path): logs_df = pd.read_csv(log_file_path) # 进行初步统计分析 event_counts = logs_df['event_type'].value_counts() return { 'total_events': len(logs_df), 'events_breakdown': dict(event_counts) } ``` 此段Python代码展示了如何利用Pandas库读取CSV格式的日志文档并对其中记载的安全接管等相关事项的数量做出汇总计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值