自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(74)
  • 资源 (2)
  • 收藏
  • 关注

原创 在Carla中构建自动驾驶:使用PID控制和ROS2进行路径跟踪

如前所述,我们将使用PID 控制器通过生成必要的执行器信号,使车辆沿所需轨迹移动。但在此之前,“执行器信号”实际上是什么意思?执行器是将电能转化为物理运动的机器人部件,通常是机器人关节中的电机或液压系统。控制器的工作是产生适量的电能以实现所需的运动。例如,如果你有一辆车,希望它从一个地方行驶到另一个地方,或者如果你有一个机械臂,希望它从桌子上抓一个苹果,规划器会给你所需的物理运动——它可以表示为速度曲线、轨迹,或两者兼而有之。控制者的工作是遵循建议的路径。

2025-04-30 16:42:43 1043

原创 ROS2与Carla安装设备(其三)测试 ROS 2

我们将安装 Carla 版本 0.9.14。确保安装此版本,因为 Carla ROS Bridge 仅与此版本兼容。您可以尝试按照官方指南安装所有依赖项并从头开始编译所有内容。但是,我们只是要下载预编译的文件并使用它。Carla Simulator 安装 Ubuntu 22.04。让我们检查 ROS 2 是否正常工作。完成 ROS 2 安装!以下是上述命令的预期输出。运行以下命令以检查,

2025-04-30 16:01:20 451

原创 ROS2与Carla安装设备指南(其二)

该工具识别并安装依赖项,充当元包管理器。它使用其系统知识和文件来查找和安装相应的包,称为。这些键与中央索引交叉引用,以查找安装的确切软件包名称。将此中央索引检索到本地计算机,以避免每次运行时都进行网络访问。在 Debian 和 Ubuntu 上,还有另一个名称相似的软件包,称为 .如果已安装该软件包,请确保在安装 之前将其删除。在 ROS1 中,首选的构建工具是 ,但在 ROS 2 中是。最后,我们可以运行来安装依赖项。从工作区的根目录运行以下命令,上面的命令,也要安装。运行以下命令以启用 ,

2025-04-30 15:33:43 216

原创 Ubuntu 22.04 的 ROS 2 和 Carla 设置指南(其一)

重点介绍适用于。我们将首先安装 Terminator 终端,然后安装 ROS 2 依赖项,然后继续安装 ROS 2 Humble。接下来,我们将介绍如何在 Ubuntu 22.04 上安装 Carla,最后通过设置将 ROS 2 与 Carla 集成。此外,我们将探索如何在支持 NVIDIA Container Toolkit 的 Docker 上安装 Carla,最后介绍如何从 Ubuntu 中删除 ROS 2 和 Carla。

2025-04-30 15:25:27 955

原创 零基础做自动驾驶集成测试(仿真)

GPUDrive 是一个模拟器,旨在将真实世界的驾驶数据与模拟速度混合,从而能够将样本效率低但有效的 RL 算法应用于自主规划器的设计。GPUDrive 在消费级和数据中心级 GPU 上都以每秒超过 100 万步的速度运行,并且具有足够轻的内存占用,可以支持数百到数千个同步世界(环境),每个世界有数百个代理。GPUDrive 支持模拟各种传感器模态,从 LIDAR 到类似人类的视锥,使 GPUDrive 可用于研究不同传感器类型对合成代理特性的影响。:相应的代理视图,以一个代理为中心。

2025-04-30 14:52:21 572

原创 人性化驾驶伙伴数据正则化自博强化学习(译文:达芙妮·科内利斯、尤金·维尼茨基纽约大学)

抽象自动驾驶汽车面临的一个主要挑战是与人类协调。因此,在仿真中整合逼真的人工代理对于自动驾驶系统的可扩展训练和评估至关重要。模拟代理通常是通过模仿大规模、高质量的人类驾驶数据集来开发的。然而,在多智能体闭环设置中执行时,纯模仿学习智能体在经验上具有很高的碰撞率。为了构建在闭环环境中真实有效的代理,我们提出了人类正则化 PPO (HR-PPO),这是一种多代理方法,其中代理通过自我游戏进行训练,偏离人工参考策略会受到轻微的惩罚。

2025-04-27 23:14:40 618

原创 通过示例学习:连续 XOR

将介绍在 PyTorch 中训练神经网络可能需要的库和所有其他部分,并在一个简单但众所周知的示例 XOR 上使用一个简单的示例分类器。请注意,仅为作为直接对象属性的对象注册参数,即 .如果定义模块列表,则这些模块的参数不会注册到外部模块,并且在尝试优化模块时可能会导致一些问题。在 init 函数中,我们通常使用 来创建模块的参数,或者定义 forward 函数中使用的其他模块。我们现在可以使用包中的预定义模块,并定义我们自己的小型神经网络。可以使用模块的函数获取模块的参数,也可以获取每个参数对象的名称。

2025-04-27 22:54:52 1049

原创 使用驾驶场景测试开环 ADAS 算法

此示例说明如何在 Simulink 中测试开环 ADAS(高级驾驶员辅助系统)算法。在开环 ADAS 算法中,自主车辆行为是预定义的,在仿真过程中不会随着场景的推进而改变。要测试算法,请使用从应用程序中保存的驾驶场景。在此示例中,您将使用 Scenario Reader 数据块读取方案,然后在上可视化方案和传感器检测。

2025-04-16 14:57:44 967

原创 自动驾驶创建场景(just soso)

点击菜单栏 ‌Export‌ → ‌Generate MATLAB Script‌,生成场景创建代码,便于后续批量修改。点击工具栏 ‌Add Sensor‌,为车辆配置摄像头/雷达,生成合成检测数据,并通过相同导出步骤获取传感器数据。点击菜单栏 ‌Export‌ → ‌Export to MATLAB Workspace‌。选择车辆,右键选择 ‌Add Target Waypoint‌,沿弯道拖动鼠标设置轨迹点。输入变量名称(默认 scenario、road、vehicle),点击 ‌OK‌。

2025-04-16 14:21:25 856

原创 (Matlab)自动驾驶仿真 设计驾驶场景、配置传感器并生成合成 数据

该平台提供从场景搭建到算法验证的完整闭环仿真解决方案,适用于ADAS系统开发、自动驾驶算法测试及标准合规性验证(如Euro NCAP)。

2025-04-16 14:12:52 612

原创 自动驾驶平行仿真(基础课程一)

首先,我们假设 特征和目标之间的关系近似线性,即条件平均值可以表示为 特点 .此设置允许 target value 可以 由于观察噪声,仍然偏离其预期值。作为一个运行示例,假设我们希望估计 房屋(以美元计)基于其面积(以平方英尺为单位)和年龄(以 年)。要开发一个预测房价的模型,我们需要得到 我们亲身体验数据,包括每个的销售价格、面积和年龄 家。常见示例包括预测价格(房屋、股票、 等)、预测住院时间(对于住院患者)、 预测需求(零售额)等等。稍后,我们将 引入分类问题,其目标是预测 一组类别的成员资格。

2025-03-03 17:50:05 322

原创 pure跟踪模拟 不算自动驾驶仿真

【代码】pure跟踪模拟 不算自动驾驶仿真。

2024-12-16 17:39:06 381

原创 自动驾驶仿真 软件在环测试

通过仿真测试,可以在实际路面行驶之前对车辆进行全面、安全的测试,从而提高自动驾驶系统的安全性和可靠性,并减少实际测试的风险和成本,加速自动驾驶技术的发展和应用。如果指定模型的一部分在 SIL 下进行仿真,则模型的一部分将保留在 Simulink 中,并且不会为模型的此保留部分生成代码。模型的此部分可以表示算法的其他部分或算法运行的环境。仿真测试可应用于智能驾驶系统的概念设计、模型开发、软件开发、硬件开发和整车开发的各个阶段,从而大幅缩短开发和测试评价周期,提高测试中的可重复性并降低风险,同时便于数据采集。

2024-11-12 01:13:03 1204

原创 自动驾驶仿真:软件在环(SIL)测试详解(精简版入门)

2.1 定义SIL仿真测试是通过将自动驾驶系统的控制软件嵌入到虚拟仿真环境中,对软件的算法(如路径规划、决策控制、感知等)进行模拟测试,以评估软件性能、稳定性和安全性。2.2 目标SIL仿真测试的核心目标是减少开发时间、降低成本并提高自动驾驶系统的可靠性。通过虚拟环境模拟各种复杂场景,可以全面测试自动驾驶软件在不同条件下的表现。

2024-11-12 01:10:23 2440

原创 车辆数据的提取、定位和融合(其三.一 共十二篇)子映射和时间加权

第一篇: System Introduction第二篇:State of the Art第三篇:localization第四篇:Submapping and temporal weighting第五篇:Mapping of Point-shaped landmark data第六篇:Clustering of landmark data第七篇:fusion of point-shaped landmark data第八篇:fusion of complex landmark data。

2024-10-18 22:38:01 955

原创 辅助驾驶测试(等级划分)

辅助驾驶指的是:在设计允许范围内;对部分的驾驶功能主动做出策略反应。自动驾驶指的是:在可行驶范围内;无需人员干预。

2024-10-15 23:10:22 1172

原创 实车测试的目的和作用 (Purpose and function of real vehicle test)

在软件发布前,所有的常规功能都需要在实车上测试通过,发布的功能中若包含无法在HIL台架上测试的部分,也需要在实车上确认。例如,电池包实车测试是电池包装车后,跟随车辆进行不同的性能测试,包含试验场路试、整车电磁兼容测试和三高测试(高寒测试、高温测试和高原测试)。实车测试的目的和作用主要在于验证整车控制器软件的功能,确保其在实车环境下的安全性和稳定性。实车测试是整车控制器软件发布前不可或缺的一个测试环节,主要目的是在实车环境上验证VCU最常规的功能,对HIL测试台架无法模拟的工况进行补充测试。

2024-08-23 23:45:00 1235

原创 自动驾驶定位融合

关系向量指定了一类可能运动的参数,通过这些参数,描述对象 j 位置的参考系可能由对象 i 的参考系产生。关系向量的一个例子是 习,j “ pxi,j,yi,j,φi,j q T,它指定二维对象 j 由 pxi,j , yi,j q T 平移并相对于对象 i 旋转角度 φi,j。输入:对象 i、j、k 的序列,具有对象 j 相对于对象 i 和对象 k 相对于对象 j 的随机空间关系,假设采用高斯噪声模型,由关系向量分布的均值 习,j 和 xj,k 和协方差 Covpxi,j 和 Covpxj,kq 表示。

2024-08-15 15:22:00 593 1

原创 自动驾驶车牌脱敏

在实际的自动驾驶场景中,车牌脱敏技术是保护驾驶者和行人隐私的重要步骤之一。上述示例代码展示了如何使用OpenCV和Python进行车牌检测和脱敏处理,但实际的自动驾驶系统可能会使用更复杂的技术,如基于深度学习的对象检测和模型推理。关于自动驾驶车牌脱敏的完整应用需要综合考虑实时性、准确性和安全性等因素,这通常需要定制化的解决方案来适应特定的使用情境和法律要求。常用的方法是使用计算机视觉技术,如深度学习模型,来检测车牌区域。一旦检测到车牌区域,接下来的步骤是模糊化或覆盖车牌号码,以保护隐私。

2024-07-25 11:33:29 889

原创 自动驾驶仿真前后端

**Web前端技术**:如HTML、CSS和JavaScript,通常结合框架如React、Angular或Vue.js等,用于开发Web应用程序。- **API端点**:定义了 `/api/simulation` 和 `/api/update` 两个API端点,分别用于获取仿真数据和更新仿真数据。- **Flask框架**:用于实现基于Python的轻量级Web后端应用,处理仿真数据的请求和响应。- **服务器端编程语言**:如Python、Java、C++等,根据需求选择最适合的语言。

2024-07-25 11:18:34 885

原创 自动驾驶论文集

这些论文代表了自动驾驶技术在不同方面的最新研究进展和应用案例。你可以通过访问IEEE Xplore、ACM Digital Library、Google Scholar等学术数据库,或者关注顶级会议如CVPR、ICRA、IV等,深入了解。自动驾驶技术的前沿研究涵盖了多个方面,包括感知、决策与规划、传感器融合、仿真与测试、安全性与可靠性等。以下是一些近期关于自动驾驶技术的前沿论文和研究方向,可以通过查找相关的学术数据库和会议论文来进一步了解。

2024-07-25 11:06:27 824

原创 自动驾驶的六个级别是什么?

自动驾驶汽车和先进的驾驶辅助系统(ADAS)预计将帮助拯救全球数百万人的生命,消除拥堵,减少排放,并使我们能够在人而不是汽车周围重建城市。自动驾驶的世界并不只由一个维度组成。从没有任何自动化到完整的自主体验,驾驶可以通过几个级别的技术优势来增强。通过允许技术进入驾驶座,汽车行业正在努力减少道路上的事故,提高驾驶员的舒适度和动力总成效率。在本文中,我们将研究如何从无自动化到驾驶辅助,再到部分、有条件和高度自动化,最终获得完全自动化的驾驶体验。

2024-07-25 10:40:14 1859

原创 Pure pursuit 跟踪模型

然而,由于在后来的模型中,我们将添加更多的动力学和纵向控制器,我们将坚持使用恒定块来定义速度。作为第一步,我们生成航点或参考点,然后在Simulink中构建一个模型,最后,我们在2D、3D和鸟眼瞄准镜等各种环境中可视化车辆运动。我们将介绍Pure Pursuit的其他一些基础知识,控制器,然后我们将有一个使用Simulink实现的部分,最后,我们将进入关键要点。因此,如果我们继续下一个模型,与上一个模型相比,我们添加了更多的动力学和纵向控制器,在这个模型中,我们添加了一个简化的动力总成和传动系统块。

2024-07-21 09:50:13 490

原创 道路模型 基础构成(Basics on Roads)

学习他 成为他 超越他 坚持。

2024-07-01 16:16:34 1208

原创 meddiver仿真场景描述

【代码】meddiver仿真场景描述。

2024-06-27 20:20:45 496

原创 Opendiver文件 格式 提取

【代码】Opendiver文件 格式 提取。

2024-06-27 20:09:46 191

原创 道路元素位置和方向的坐标系统: 点 线 面 连接点

笛卡尔坐标系,也称为直角坐标系,是由两条互相垂直的数轴构成的平面仿射坐标系。当两条数轴上的度量单位相等时,此仿射坐标系被称为笛卡尔坐标系。如果两条数轴互相垂直,则称为笛卡尔直角坐标系;否则,称为笛卡尔斜角坐标系。

2024-06-26 17:09:56 1144

原创 自动驾驶静态障碍物 Agent based simulating model

在模拟或设计软件中,为道路和路口放置静态物体、定义形状、道路标记、连续物体以及为ASM(Agent-based Simulation Model,基于代理的仿真模型)和其他车辆定义路线等,通常涉及一系列详细的步骤。

2024-06-26 16:19:21 514

原创 自动驾驶仿真道路创建(generation road)

在模拟或设计软件中创建道路并指定其特征是一个复杂但必要的过程,尤其是在进行交通模拟、城市规划或道路设计项目时。请注意,不同的软件可能有不同的工具和界面来执行这些任务。

2024-06-26 16:17:19 834

原创 车辆数据的提取、定位和融合 精确车辆定位(其三.一 共十二篇)随机复合

第一篇: System Introduction第二篇:State of the Art第三篇:localization第四篇:Submapping and temporal weighting第五篇:Mapping of Point-shaped landmark data第六篇:Clustering of landmark data第七篇:fusion of point-shaped landmark data第八篇:fusion of complex landmark data。

2024-06-25 22:19:56 1687

原创 自动驾驶辅助功能测试用例表格(续5)

这些测试用例进一步补充了自动驾驶辅助系统的测试范围,涵盖了可靠性、安全性、可用性、耐久性和失效模式等多个方面。通过这些测试,可以全面评估自动驾驶辅助系统的性能和稳定性,确保其在实际应用中的可靠性和安全性。

2024-06-24 00:04:08 567

原创 车辆数据的提取、定位和融合(其二.一 共十二篇)

第一篇: System Introduction第二篇:State of the Art第三篇:localization第四篇:Submapping and temporal weighting第五篇:Mapping of Point-shaped landmark data第六篇:Clustering of landmark data第七篇:fusion of point-shaped landmark data第八篇:fusion of complex landmark data。

2024-06-24 00:03:58 1075

原创 自动驾驶辅助功能测试用例表格(续4)

这些测试用例涵盖了自动驾驶辅助系统的多个关键功能和性能指标,旨在确保系统在各种道路和交通场景下都能正常工作,并满足设计要求。通过严格的测试和验证,可以确保自动驾驶辅助系统的稳定性和可靠性,提高行车安全性和乘车体验。

2024-06-23 03:34:30 541

原创 自动驾驶辅助功能测试用例表格(续3)

这些测试用例旨在确保自动驾驶辅助系统在各种场景下都能正常工作,提高行车安全性。通过严格的测试和验证,可以及时发现并修复潜在的问题,从而确保系统在实际使用中的稳定性和可靠性。注意:上述测试用例仅为示例,并非完整列表。在实际测试中,还需要根据具体需求和系统特性设计更多的测试用例。同时,“通过/失败”列需要根据实际测试结果进行填写。

2024-06-23 03:33:02 452

原创 自动驾驶辅助功能测试用例表格(续2)

这些测试用例涵盖了自动驾驶辅助系统的多个关键功能和性能指标,旨在确保系统在各种道路和交通场景下都能正常工作,并满足设计要求。通过严格的测试和验证,可以确保自动驾驶辅助系统的稳定性和可靠性,提高行车安全性和乘车体验。

2024-06-23 03:23:30 716

原创 自动驾驶辅助功能测试用例表格(续1)

这些测试用例旨在确保自动驾驶辅助系统在各种场景下都能正常工作,提高行车安全性。通过严格的测试和验证,可以及时发现并修复潜在的问题,从而确保系统在实际使用中的稳定性和可靠性。注意:上述测试用例仅为示例,并非完整列表。在实际测试中,还需要根据具体需求和系统特性设计更多的测试用例。同时,“通过/失败”列需要根据实际测试结果进行填写。

2024-06-23 03:21:25 827

原创 APA(自动泊车辅助)功能测试用例

请注意,我保留了“车辆执行”和“具体信号状态”部分的省略号(...),因为您没有提供具体的操作步骤或信号状态信息。在实际测试中,您需要填写这些部分以详细描述测试过程。

2024-06-23 03:11:19 1966

原创 自动驾驶仿真测试用例(完善版本)

请注意,上述测试用例中的“通过/失败”列在实际测试执行后填写,以记录测试结果是否符合预期标准。这些测试用例旨在覆盖自动驾驶车辆的多个关键功能和系统,确保在各种场景和条件下都能。进一步完善上述的测试用例,并根据不同的测试准备、车辆准备、车辆状态、车辆场景、车辆执行、可变因素、具体信号状态、通过标准和预期标准来详细描述每个测试用例。

2024-06-23 03:01:58 1197

原创 自动驾驶辅助功能测试用例表格

这个测试用例表格设计得很全面,覆盖了从单元测试到系统测试、集成测试、压力测试以及冒烟测试等多个方面。不过,在实际应用中,可能还需要进一步细化测试描述和预期结果,以确保测试的准确性和可重复性。:对于每个测试用例,测试描述应该尽可能具体,包括测试的具体步骤、输入条件、环境设置等。:对于某些测试用例,可能存在前置条件,如特定的硬件配置、软件版本、测试环境等。:根据测试用例的重要性和风险程度,可以添加测试用例的优先级字段。:在每次执行测试用例后,应记录实际结果,并与预期结果进行比较。

2024-06-23 02:57:16 748

原创 自动驾驶仿真测试用例表格示例 (基本注意事项)

设计更多的测试用例时,需要根据具体的功能需求、系统架构和业务场景进行详细规划和设计,以确保测试覆盖面尽可能广泛,并有效地评估系统在各种情况下的表现。2. **测试类型**:标识测试属于单元测试(UT)、系统测试(ST)、集成测试(IT)、压力测试(PT)或冒烟测试。1. **用例编号**:每个测试用例都有一个唯一的编号,方便跟踪和识别。4. **测试描述**:详细说明测试的具体步骤和条件。5. **预期结果**:描述测试执行后预期的系统行为或输出。3. **测试项目**:描述被测试的具体功能或系统部分。

2024-06-23 02:55:36 1102

自动驾驶控制小仿真pure

python 适合新手学习 有车辆模型 算法

2024-05-15

RayFilterParamParameter.yaml

RayFilterParamParameter.yaml

2021-11-30

baoli_chassis_workspace.run

baoli_chassis_workspace.run

2021-07-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除