阅读论文《Deep Photo Enhancer: Unpaired Learning for Image Enhancement from Photographs with GANs》

本文介绍了《Deep Photo Enhancer》论文,探讨如何使用U-net结构提取全局特征,并改进WGAN以自适应调整权重,同时在生成器中应用individual BN层。研究展示了这些改进在图像增强任务上的有效性。
摘要由CSDN通过智能技术生成

   论文原地址:https://www.cmlab.csie.ntu.edu.tw/project/Deep-Photo-Enhancer/CVPR-2018-DPE.pdf
   这篇论文主要用来非对齐图像的增强,这里只简要介绍一下文章的idea。这篇文章主要有三个创新点,分别如下:
1、对U-net进行修改,增加提取全局特征进行学习。
2、对WGAN进行改进,可以自动调整其权重系数。
3、在生成器中添加可以学习特定风格的individual BN层。
下面进行详细介绍。
   这篇文章主要还是对unpair的图像进行增强,属于弱监督学习的范畴。所以采用的基本架构是2-way GAN生成器结构,如下图所示:



   上图中,Gx和Gx’,Gy和Gy’是共享权重的,也就是说实际只有两个生成器,2-way GAN就是对这两个生成器和两个判别器进行训练,类似于cycleGAN和DualGAN,详情可以参考关于这方面的介绍。

生成器,带有提取全局特征的U-net

   这里生成器是基于U-net,U-net在许多图像任务里都有很好的表现,但是在这里没有特别好的表现,论文认为主要是因为没有提取全局特征。视觉系统通常会根据全局的光线和场景条件做调整,全局特征通常可以反映高维的信息例如场景类别主题和全局的光线条件,这可以帮助像素做局部有的调整。因此,有必要在U-net上增加全局特征。
   论文提出的U-net结构如下图所示,其提取全局特征的方式是这样的,首先前面几层都是使用5x5的卷积,stride=2,使用SELU激活和BN,然后变成32x32x128这个特征,接着特征进一步按照上述的操作转换成16x16x128,再到8x8x128的特征,这个特征通过一个全连接层转换成一个1x1x128的全局特征,然后被拷贝32x32份,变成32x32x128的全局特征,再和前面的那个32x32x128的局部特征concat在一起变成32x32x256的混合特征。最后,这个网络还采用了残差学习,也就是把输出加到了最后,网络学习的是输入和目标之间的残差部分。



   论文还对这个网络的性能做了对比实验,使用MIT-Adobe 5K数据集,在loss上使用MSE,和其他网络进行对比,结果如下,可以看出效果还是不错的。



对GAN的改进,可自适应调整权重系数

   这个部分对应于论文里one-way GAN里的内容,这里论文对几种GAN做了对比实验,发现WGAN-GP的效果最好,但是WGAN-GP主要依赖于Lipschitz条件限制,这个限制是附带一个权重 λ λ 的,所以这个权重对于效果影响很大,如果权重过大,收敛会变得过慢。如果权重过小,Lipschitz条件又无法得到满足。这里gradient penalty被写成以下形式:



   这里可以更加反映梯度应当小于或者等于1而只对大于1的部分做惩罚。而这里更重要的是采用了自适应的权重

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值