欧拉公式和傅里叶变换对我们现在生活的影响真的很大呀!欧拉公式将三角函数和实数函数(e为底的指数函数)互转桥梁。
因此可以把三角函数中复杂的三角变换问题转到较直观的代数运算,也能够把高次幂的正余弦函数表示为一次幂函数的代数和,改变被积函数和求导函数。
傅里叶级数告诉我们任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来转换。
其中L=T(周期),。而三角函数
都有自己的振幅A,角速度(频率)w=2
/T和相位θ。傅里叶变换把一个关于x的时间域(变量域)转到频率域w来。
计算机上的声音和图像信号、工程上的任何波动信息、数学上的解微分方程、天文学上对遥远星体的观测,现实生活中的数据信号都会用傅里叶变换后处理。手机播放MP3音乐、看图片、语音识别,这些都是傅里叶变换的日常应用。傅里叶变换把一些难于直接从时域函数(关于x的函数曲线)获取信息空域信号转变到频域上,不同事物之间存在着一个变化,频率就描述了它们间变化的快慢速率,实际应用中我们往往是要找到这些频率较高的现象,所以傅里叶变换是把一些复杂的事物拆解成一堆标准化的简单事物的方法。通信工程中经常用到,作为一名计算机系的IT男,需要从大数据中提取有用的信息。
看了一晚,看懂时才在知乎上又看到两篇介绍欧拉公式和傅里叶变换的文章,讲的比较好吧