傅里叶变换、拉普拉斯变换、Z变换

傅里叶变换、拉普拉斯变换、Z变换

  • 傅里叶级数

    周期函数的傅里叶级数被定义为:
    f ( t ) = ∑ n = − ∞ ∞ F n e i 2 π n t / T f(t)=\sum_{n=-\infty}^\infty F_ne^{i2\pi nt/T} f(t)=n=Fnei2πnt/T
    其中T为函数周期, F n F_n Fn为傅里叶展开系数
    F n = 1 T ∫ − T / 2 T / 2 f ( t ) e − i 2 π n t / T d t F_n=\frac{1}{T}\int_{-T/2}^{T/2}f(t)e^{-i2\pi nt/T}\mathrm dt Fn=T1T/2T/2f(t)ei2πnt/Tdt
    对于实值函数,函数的傅里叶级数可以写成:
    f ( t ) = a 0 2 + ∑ n = 1 ∞ [ a n cos ⁡ ( 2 π n t T ) + b n sin ⁡ ( 2 π n t T ) ] f(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 \pi n t}{T}\right)+b_{n} \sin \left(\frac{2 \pi n t}{T}\right)\right] f(t)=2a0+n=1[ancos(T2πnt)+bnsin(T2πnt)]
    其中 a n a_n an b n b_n bn是实频率分量的振幅

  • 傅里叶变换
    F ( f ( t ) ) = ∫ − ∞ ∞ f ( t ) e − i w t d t F(f(t))=\int_{-\infty}^{\infty} f(t) e^{-i w t} \mathrm{dt} F(f(t))=f(t)eiwtdt
    由欧拉公式
    e i θ = c o s θ + i s i n θ e^{i\theta}=cos\theta+isin\theta eiθ=cosθ+isinθ
    带入傅里叶变换得
    F ( f ( t ) ) = ∫ − ∞ ∞ f ( t ) [ cos ⁡ ( w t ) − i sin ⁡ ( w t ) ] d t F ( f ( t ) ) = ∫ − ∞ ∞ f ( t ) cos ⁡ ( ω t ) d t − ∫ − ∞ ∞ f ( t ) isin ⁡ ( ω t ) d t \begin{array}{l} F(f(t))=\int_{-\infty}^{\infty} f(t)[\cos (w t)-i \sin (w t)] \mathrm{dt} \\ F(f(t))=\int_{-\infty}^{\infty} f(t) \cos (\omega t) \mathrm{d} \mathrm{t}-\int_{-\infty}^{\infty} f(t) \operatorname{isin}(\omega t) \mathrm{d} t \end{array} F(f(t))=f(t)[cos(wt)isin(wt)]dtF(f(t))=f(t)cos(ωt)dtf(t)isin(ωt)dt

  • 拉普拉斯变换

    对于不满足迪利克雷条件的函数(不可积),乘上 e − σ e^{-\sigma} eσ作为衰减因子,这样就将傅里叶变换转换为拉普拉斯变换。
    F [ f ( t ) e − β t ] = ∫ − ∞ + ∞ f ( t ) e − β t e − i ω t d t = ∫ 0 + ∞ f ( t ) e − ( β + i ω ) t d t F\left[f(t) e^{-\beta t}\right]=\int_{-\infty}^{+\infty} f(t) e^{-\beta t} e^{-i \omega t} d t=\int_{0}^{+\infty} f(t) e^{-(\beta+i \omega) t} d t F[f(t)eβt]=+f(t)eβteiωtdt=0+f(t)e(β+iω)tdt

  • Z变换

    将连续信号变为离散信号,连续函数f(t)变为离散点列x[n]
    X ( z ) = ∑ − ∞ ∞ x [ n ] z − n X(z)=\sum_{-\infty}^\infty x[n]z^{-n} X(z)=x[n]zn

  • δ \delta δ函数

    又称单位脉冲函数,或称狄拉克函数

    基本性质:

    • 筛选性质
      ∫ − ∞ + ∞ δ ( t − t 0 ) f ( t ) d t = f ( t 0 ) \int_{-\infty}^{+\infty}\delta(t-t_0)f(t)dt=f(t_0) +δ(tt0)f(t)dt=f(t0)

    • 设u(t)是单位阶跃函数
      u ( t ) = { 1 , t > 0 0 , t < 0 \begin{array}{c} u(t)=\left\{\begin{array}{l} 1, t>0 \\ 0, t<0 \end{array}\right. \end{array} u(t)={1,t>00,t<0
      则有
      ∫ − ∞ t δ ( t ) d t = u ( t ) , d u ( t ) d t = δ ( t ) \int_{-\infty}^{t} \delta(t) d t=u(t), \frac{d u(t)}{d t}=\delta(t) tδ(t)dt=u(t),dtdu(t)=δ(t)

    • 单位脉冲函数的傅里叶变换为1,即包含各种频率分量且幅度相等。称此为白色频谱。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值