首先给出我在学习这几个“巨人公式”的时候比较疑惑的问题:
1.s=jw?
2.频域、复数域的关系?
定义(个人理解):
1.傅里叶变换:所有函数都可以变换成等幅振荡的正弦函数集(叠加,频率不同),将时域坐标放在三维空间去看,是以不同频率为自变量,振幅为因变量的图像。
2.拉普拉斯变换:一个时域函数的自变量t由复数s=+jw来代替的复数域函数。通过高中只是,我们知道复数由实部和虚部组成,也就是说一个自变量需要二维空间才可以表示,横轴为实部
,纵轴为虚部w。
3.欧拉公式:作为一个上帝公式,它的定义是e^jw=cosw+jsinw,是指数和三角函数的变换。
那么为什么s=jw呢,其实是因为在对任意时域函数进行傅里叶变换时,对于幅值较大的我们很难轻易将其变换为等幅振荡的正弦函数,所以引入了一个衰减因子,e^-t,,在和傅里叶变换的e^-jwt结合后,就变成了复数域,相当于多了一个实部
。
这也是复数域和频域之间的关系!
而对于欧拉公式来说,他作为一个桥梁,将正弦函数和指数之间的关系构建出了,这也是傅里叶变换、拉普拉斯变换的基础!